Jun 15
  1.  Graduate Abstract Algebra

  2. Algebra is the offer made by the devil to the mathematician...All you
    need to do, is give me your soul: give up geometry
  3. --Michael Atiyah
  4. Structures are the weapons of the mathematician. - Bourbaki
  5. Abstract Algebra II « Saylor.org (PG)
  6. Algebra 1 Lectures by Victor Ginzburg Notes by Zev Chonoles The University
    of Chicago Math 325 Fall 2012
  7. AN INTRODUCTION TO ABSTRACT ALGEBRA Romyar Sharifi University of Arizona 2012 (PG-13)
  8. Abstract Algebra Paul Garrett University of Minnesota (PG-13)
  9.  Abstract Algebra I  G. Eric Moorhouse University of Wyoming 2005 (PG-13)
  10. Abstract Algebra  Tom Marley and Laura Lynch University of Nebraska 2010 (PG-13)
  11. Abstract Basics, Polynomials, Galois Theory  Categorial and Commutative Algebra by Andreas Hermann University of Tuebingen June 22, 2005 (PG-13/R)
  12. Abstract Algebra for Graduate Students Alexander Kleshchev University of Oregon 2003 (PG-13/R)
  13. Abstract Algebra Jim Brown Clemson University 2012 (PG)
  14. Abstract Algebra I Notes Jingjin  Yu University of Illinois Urbana-Champlaign Fall 2008 (PG-13)
  15. Abstract Algebra Ulrich Meierfrankenfeld Michigan State University 2012 (PG-13/R)
  16. Abstract Algebra by Paul Garrett University of Minnesota Hyperlinked version (PG/PG-13)
  17. Graduate Algebra I-II  I:Groups and Fields II: Rings and Modules George F. McNulty University of
    South Carolina  2010-2011 (PG-13)
  18. Modern Groups, Fields, and Galois Theory Michael E. O'Sullivan San Diego State University Lecture Notes for Math 627B 2011 (PG-13)
  19. Algebra Online Second Edition Mark Steinberger The University at Albany State University of New York
    August 31, 2006 (R)
  20. Algebra Stephen S. Shatz and Jean Gallier Department of Mathematics University of Pennsylvania March 27, 2011  (R)
  21. Algebra: A First Course  Michael Stoll Jacobs University Fall 2005 (PG-13/R)
  22.  Algebra: Polynomials, Rings and Finite Fields Stephen New  University of Waterloo  December 2011(PG-13)
  23. Rings and Groups Eugenia Cheng  University of Sheffield  2012–13 (PG-13/R)
  24. Modern Algebra Matt Douglass University of North Texas Spring 2003 (PG-13)
  25. First Year Graduate Algebra Course Materials George M. Bergman University of Berkeley (R)
  26. Algebra I (Honors Section) Douglas Ravenel University of Rochester Spring, 2012 (PG-13)
  27. Algebra I Chan, Kwok Wai Chinese University of Hong Kong 2012-13 (PG-13)
  28. Graduate Algebra Course Paul Selick University of Toronto (R) A graduate algebra course covering the
  29. classic mantra: groups, rings and fields with a heavy side helping of group representation theory via semisimple rings on the side. Typical Selick: All business, very concise, few examples, no pictures- but
  30. enormous clarity and thoroughness. Recommended, as are all Selick's notes.
  31. A Companion to Lang's Algebra by George Bergmann University of Berkeley Lecture Notes 2007 (R) 
  32. Algebra S Paul Smith University of Washington Fall-2013 (PG-13/R)
  33. Modern Algebra I Lecture Notes  Ken Monks University of Scranton Revised: Fall 2002 (PG-13)
  34. Graduate Algebra Diane Maclagan Notes by Florian Bouyer University of Warwick (R)
  35. Graduate Algebra I  Matt Kerr University of Washington St.Louis  Fall Semester 2012 (R)
  36.  Introduction to algebra Andreas Holstrom Institute of Advanced Scientific Studies (PG-13)
  37. Algebra: Polynomials & Rings Richard Barraclugh University of Burmingham MSMXP5(PG-13)
  38. Algebra:Symmetry And Groups Richard Barraclugh University of Burmingham MSM2P2 (PG-13) 
  39. Graduate Algebra I: Group Theory Kiyoshi Igusa Brandies University Fall 2007 (R)
  40. Graduate  Algebra II Lecture Notes Kiyoshi Igusa Brandies University May 2007 (R) These are the complete lecture notes of the 2009 first year graduate algebra sequence taught by Igusa at Brandeis. As seems to be The Unwritten Law these days among many algebraicists, this course begins with a complete semester long treatment of group theory. I completely agree that it makes pedagogical sense to begin a comprehensive modern algebra course with group theory-since all other structures can and should be erected on top of the group structure for the sake of ordering the course linearly from the simplest to the most complex algebraic structures. However,I'm not sure if going into such depth with group theory to the exclusion of all else is doing students a favor in thier perception of algebra. A little more balance-as can be seen in the wonderful book by Pierre Grillet -will allow much broader coverage in a first year algebra course,which would be A Good Thing. More detail in specific structures can be supplied in more specialized follow up courses.Be that as it may, Igusa gives a thorough graduate course in group theory as the first half of his sequence and as expected, he does a terrific job. You also have to admire the fact he actually defines algebra with his very first sentence, something most mathematicians don't have the nerve to do:  Algebra is the study of sets with binary operations. I don't think anyone can do better then that as a definition of this foundational subject, do you? The course is classical in the sense that category theory is avoided, but all the main results are presented with many examples, some of which are unexpected, such as Cayley digraphs and isomorphisms on the complex numbers. These are the things that made me fall in love with algebra as an undergraduate and these notes will make any student studying algebra fall in love with it as well.
  41. Graduate Algebra  Ulrich Meierfrankenfeld Michigan State University April 26, 2013 (R)
  42. Introduction to algebra Andreas Holmstrorm Oslo University (PG-13)
  43. Modern Algebra Klaus Kaiser University of Houston 2006 (PG-13)
  44. Graduate Algebra Aravind Asok University of Southern California Fall 2011 (PG-13/R)
  45. Algebra: An Introduction Pat Goeters Auburn University (PG)
  46. Graduate Algebra I: Groups, rings, and Fields. H. W. Lenstra  University of California At Berkeley (R)
  47. Abstract Algebra  Ulrich Meierfrankenfeld Michigan State University May 8, 2001 (PG-13/R)
  48. Graduate Algebra I-II Jay Pantone University of Florida August 19, 2012 (R)
  49. Abstract Algebra - Diane Maclagan, Simon Thomas Rutgers University (R)
  50. Algebra and Geometry Lau Chi Hin Chiinese University of Hong Kong 2013 (PG-13)
  51. A COURSE ON INTEGRAL DOMAINS ALGEBRA II - H. Pat Goeters Auburn University SPRING 2004(R)
  52. RINGS AND FIELDS Graduate Algebra II notes H. Pat Goeters Auburn University (R)
  53. From Groups To Galois Amin Witno Philadelphia University (Jordan) (R)
  54. Algebra Jerry Shurman Reed College (R)
  55. Algebra notes Darij Grinberg University of Karlsruhe (R)
  56. Abstract Algebra  Larry Howe Rowan University (R)
  57. Graduate Algebra Daan Krammer University of Warwick November 29, 2013 (R)
  58. ALGEBRA  Rudi Weikard University of Alabama at Birmingham 2010 (PG-13)
  59. Algebraic Structures I Emil Volcheck Loyola Marymount University 2003 (R)
  60. Graduate Algebra Andrew Monnot University of California Riverside (R)
  61. Graduate Algebra  Sean Sather-Wagsta North Dakota State University (PG-13/R)
  62. Advanced Algebra I Jungkai Alfred Chen National Taiwan University 2008 (R)
  63. Advanced Algebra II Jungkai Alfred Chen  National Taiwan University 2008 (R)
    EXERCISES Jim Howie Heriot-Watt University 2008
  65. Graduate Abstract Algebra Ulrich Meierfrankenfeld  Michigan State University November 18, 2013 (R)
  66. Algebraic Structures I Ralph Stohr University of Manchester 2013 (PG-13)
  67. Abstract Algebra Chi-Kwong Li Department of Mathematics, College of William and Mary Fall 2013
  68. Abstract Algebra: The Basic Graduate Year Robert B. Ash  University of Illinois
  69. Graduate Algebra S. Paul Smith Department of Mathematics University of Washington Fall 2013
  70. Abstract Algebra Class Notes Walter Schreiner Christian Brothers University (Tennessee)
    Massachusetts at Amherst 2012
  72. GRADUATE ALGEBRA II  JENIA TEVELEV University of Massachusetts at Amherst 2010
  73. Algebra I:Theory of Groups and Vector Spaces Dennis Gaitsgory Harvard University  2012-2013
  74. Workbook in Higher Algebra David Surowski Department of Mathematics Kansas State University