Jun 15
  1. Functional Analysis and Operator Theory

  2. ....most texts make a big distinction between 'real analysis' and 'functional analysis', but we regard this distinction as somewhat artificial. Analysis without functions doesn't go very far.-from the preface of Analysis 2nd edition by Elliott H. Lieb and Michel Loss

  3. Functional Analysis Jan Kristensen Mathematical Institute - University of Oxford
  4. Functional Analysis Eric A. Carlen 1 Rutgers University January 30, 2013
  5. FUNCTIONAL ANALYSIS Lecture notes by Razvan Gelca Texas Tech University 2012
  6. Functional Analysis Alexander C. R. Belton Lancaster University  2004, 2006
    Hyperlinked and revised edition
    Own Lecture Notes
  7. Functional Analysis R.R. van Hassel Helmond date: 6 November 2009
  8. Measure Theory and Functional Analysis Lecture Notes P. Cannarsa & T. D’Aprile
    Dipartimento di Matematica Universit`a di Roma “Tor Vergata”
  9. Operator Theory: Banach and Hilbert Space Theory Robert Sims University of Arizona Math
    528 B Section 001 Spring 2011
  10. Basic prerequisites in differential geometry and operator theory in view of applications to
    quantum field theory Sylvie Paycha May 27, 2009
  11. Operator Theory and Complex Geometry  Ronald G. Douglas Department of Mathematics, Texas
    A&M University
  12. Pseudodifferential operators and spectral theory Heiko Gimperlein University of Copenhagen
  13.  Lecture Notes on Operator Theory Woo Young Lee Seoul National University Spring 2010 


  1. OPERATOR THEORY Eugene Shargorodsky King's College University Of London  
  2. Spectral Theory, with an Introduction to Operator Means William L. Green Georgia Tech University
    January 30, 2008
  3. Index Theory of Differential Operators Notes prepared and typed by P. Manoharan Penn
    State University Based on lectures given by Dan Burghelea The Ohio State University 2009
  4. Operator Theory Fall 2008 J. A. Virtanen University of Reading
  5. Operator Theory: Part III Lecture Notes Anthony Wasserman University of Cambridge 2006,
  6. K -theory for operator algebras. Classification of C  -algebras. Pere Ara, Francesc Perera,
    and Andrew S. Toms
  7. Operator Theory and Applications Joel Feldman Department of Mathematics, University of
    British Columbia 
  8. Mathematical Physics: Spectral Theory of Schrödinger Operators Joel Feldman University of British Columbia Mathematics 512
  9.  The complex Monge-Ampere operator in pluripotential theory Zbigniew Block University of Notre Dame
  10. Bounded  Operators Jan Derezinski Department of Mathematical Methods in Physics Warsaw
    University version January 31, 2007
  11. Operators on L( R) Jan Derezinski Department of Mathematical Methods in Physics
    Warsaw Jan. 2007 January 30, 2007
  12. Operator Algebras Lecture Notes  N.P. Landsman Institute for Mathematics, Astrophysics, and Particle Physics Radboud University December 14, 2011 
  13. Unbounded linear operators Jan Derezinski Department of Mathematical Methods in Physics
    University of Warsaw version of March 2013 
  14. von Neumann algebras  Vaughan F.R. Jones University of Berkeley 2010
  15. NONCOMMUTATIVE GEOMETRY AND QUANTUM GROUPS Lecture Notes Edited by Piotr M. Hajac University of Warsaw
  16. Real Analytic Functions and Classical Operators Pawe Domanski Adam Mickiewicz
  17. C -Algebras Lecture Notes Dana P. Williams Darthmouth College May 13, 2011
  18. Nonlinear Analysis and Mathematics and Statistics Utah State University November 11, 2004
  19. A (Very) Short Course on C -Algebras Dana P. Williams Darthmouth University August 19, 2011
  20. Operator Algebras Lecture Notes John M. Erdman Portland State University Version March 12,
  21. C*-Algebras:An Introduction by Pierre De La Harpe and Vaughan Jones
  22. C*-algebras I F Wilde King's College London
  23. Pseudodifferential Operators And Nonlinear PDE Michael E. Taylor University of North Carolina
  24. Noncommutative Microlocal Analysis Part I Michael E. T a ylor University of North Carolina
  25. Infinite-dimensional Lie algebras  Pavel Etingof Scribed by Darij Grinberg Spring term 2012 at MIT March 2013
  26. Quantum Groups and Algebras David Jordan University of Texas
  27. Algebraic K -Theory John Rognes April 29th 2010
  29. C  -algebras Jan Derezinski Department of Mathematical Methods in Physics Warsaw University  January 2006
  30. OPERATORS ON HILBERT SPACE Lecture notes by Antony Wassermann, Michaelmas 1991
  31. von Neumann Algebras: Part III Lecture Notes Anthony Wasserman (handwritten notes) Lent 2008,
    University of Cambridge, without supplementary material: Part I
  32. Operator Algebras: Kac-Moody and Virasoro Algebras Part III Anthpmy Wasserman -
    Michaelmas 1998, University of Cambridge
  33. Topics in Spectral Theory Vojkan Jaksic Department of Mathematics and Statistics McGill University
  34. C* Algebras lecture notes Andrew Monnot University of California Riverside
  35. THE SPECTRAL THEOREM DANA P. WILLIAMS Darthmouth University 1995
  36. Spectral theory in Hilbert spaces E. Kowalski ETH Zurich 2009 
  37. C -Algebras and K-Theory Lecture Notes N.P. Landsman Korteweg{de Vries Institute for Mathematics
    University of Amsterdam
  38. C -Algebras and K-Theory Part II K-theory of C -algebras N.P. Landsman Korteweg{de Vries
    Institute for Mathematics University of Amsterdam
  39. Introduction to Noncommutative Geometry (a.k.a. Operator Algebras) Raphaël Ponge Seoul National University Spring 2012 
  40. Lectures on QUANTUM GROUPS AND NONCOMMUTATIVE GEOMETRY B. Pareigis Universität
    München - Summer Semester 2002
  41. C*-ALGEBRAS Garth Warner Department of Mathematics University of Washington
  42. C § -ALGEBRAS J. A. Erdos Department of Mathematics King’s College London
  43. OPERATORS ON HILBERT SPACE by John Erdos King's College London
  44. Very Basic Noncommutative Geometry Masoud Khalkhali University of Western Ontario
  45. NONCOMMUTATIVE RINGS Michael Artin class notes, Math 251, Berkeley , fall 1999
  47. NONCOMMUTATIVE GEOMETRY Matilde Marcolli Florida State University 2008 Course Materials
    And Lecture Notes
  48. Noncommutative Geometry Quantum Fields and Motives Alain Connes Matilde Marcolli
  50. Analysis: Duality methods and operator spaces David P. Blecher University of Houston May 7, 2007
  51. Local Theory of Holomorphic Foliations and Vector Fields Julio C. Rebelo & Helena Reis 2010.12
  52. Duality, Adjoint Operators, and Green’s Functions Donald Estep Colorado State
  53.  Operator Algebras G.Jungman School of Natural Sciences, Institute for Advanced Study 
  54. Functional Analysis Notes M. Einsiedler, T. Ward Draft ETHZ July 2, 2012
  55. Functional Analysis Richard Melrose MIT Spring 2009 version individual lectures 
  56. Functional Analysis in Applied Mathematics and Engineering by Klaus Engel University of L'Aquila Faculty of Engineering 2012-2013
  57. Companion to Functional Analysis John M. Erdman Portland State University Version April 29, 2013
  58. Linear Functionals Some Topics in Advanced Functional Analysis A Crash Course M.T.Nair
    Department of Mathematics, IIT Madras August 13, 2012
  59. Real Analysis III  Advanced Functional Analysis and Operator Theory  Leon Takhtajan SUNY at Stony Brook Fall 2011
  61. Integration and Functional Analysis Math 6110 Supplemental Notes Robert Strichartz Cornell University Fall 2012
  62. Functional lecture notes T.B. Ward University of East Anglia.
  63. Functional Analysis Feng Tian, and Palle Jorgensen The University of Iowa 2010
  64. Functional Analysis: LINEAR ANALYSIS I David Walnut George Mason University FALL 2006
  65. Functional Analysis David Colton Universiity of Delaware August 29, 2011
  66. Functional Analysis Micheal E. Taylor University of North Carolina 
  67. Functional Analysis Richard Bass University of Connectiuit
  68. Functional Analysis Roman Vershynin University of Michigan
  69. Geometric Functional Analysis Roman Vershynin University of Michigan 2010
  70. FUNCTIONAL ANALYSIS VLADIMIR V. KISIL lecture notes School of Mathematics University of Leeds
  71. Functional Analysis Roger Moser University of Bath Semester 2, 2012/13
  72. Functional Analysis Part IB/II Lecture Notes Anthony Wasserman University of
    Cambridge, lectures 1-16 Lent 1999
  73. Part IB/II Lecture Notes on Functional Analysis Anthony Wasserman Lent 1999, Cambridge lectures 17-24: ps
  74. Functional Analysis Math 756-757 Maria Girardi University of South Carolina 2008-2009
  75. Elements of Functional Analysis A Series of Lecture Notes Compiled by Matthew R. Gamel University of South Carolina
  76. Course Notes for Functional Analysis I Math 655-601 Fall 2011 Th. Schlumprecht Texas
    A&M December 13, 2011-2
  77. Functional Analysis Class Notes Webpage Robert Gardner University of Eastern Tennesee
  78. Functional Notes Fall 2004 Sylvia Serfaty Yevgeny Vilensky Courant Institute of Mathematical Sciences New York University March 14, 2006
  79. Functional Analysis Paul Garrett University of Minnesota 2013
  81. Functional Analysis Analysis Part III T. W. Korner University of Cambridge October 21, 2004
  82. Functional Analysis (Math 920) Lecture Notes for Spring `08 Je Schenker Michigan State
  83. Functional Analysis–Math 920 (Spring 2003) Casim Abbas University of Michigan April 25, 2003
  84. Supplementary materials Functional Analysis Mark A Kon Boston University Course Materials 2012
  85. Functional Analysis 2003{04 by P. G. Dixon University of Sheffield
  86. Functional Analysis Thomas Ward University of East Anglia
  87. FUNCTIONAL ANALYSIS PIOTR HAJLA University of Pittsburgh 
  88. Functional Analysis Rakesh University of Delaware  February 27, 2013 
  89. Functional Analysis Rakesh University of Delaware Notes for Math 806 February 27, 2013
  91. Introduction to Functional Analysis Vladimir V. Kisil School of Mathematics, University of Leeds 2014
  92. Nonlinear Functional Analysis SS 2008 Andreas Kriegl
  93. Nonlinear Functional Analysis  Gerald Teschl Fakultat fur Mathematik Nordbergstrae 15 Universitat Wien
  94. Nonlinear Functional Analysis with Applications to Partial Differential Equations Oliver Tse April 5, 2012
  95. Spectral Theory Roland Schnaubelt KIT
  96. Linear Analysis (Fall 2001) Volker Runde University of Alberta August 22, 2003
  97. Spectral Theory with an Introduction to Operator Means William L. Green Georgia Tech Jan
    uary 30, 2008
  98. The Peter Weyle Theorum for Compact Groups Dana Williams Darthmouth University
  99. Funtional Analysis Lecture notes for 18.102 Richard Melrose Department of Mathematics MIT
    2013 version 
  100. Distribution Theory Hasse Carlsson Chalmers University 2011
  101. DISTRIBUTION THEORY by Gunther Hormann & Roland Steinbauer University at Wien Summer Term
  102. LINEAR ANALYSIS Nicholas J. Rose  North Carolina State University 1998
  103. Hilbert Spaces Part II Lecture Notes Anthpny Wasserman Lent 1996, Cambridge, Graham Allan's adaptation (2002):
  104. Linear Mathematics A.M.W Glass University of Cambridge Lent Term 2002
  105. Banach Spaces lectured by Bernd Kirchheim | Hilbert Spaces Batty | Mathematical Institute - 595-
  106. Banach spaces Marius Junge University of Wisconsin Urbana Course Materials
  107. Graduate course
  108. Notes on Topological Vector Spaces Stephen Semmes Rice University 2003
  109. NOTES ON LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES J. L. Taylor University of Utah July , 1995
  111. Optimization Algebraic and Topological Vector Spaces Kipp Martin and Chris Ryan Booth School of Business University of Chicago  March 13, 2012
  112. Functional Analysis Notes Hang New York University Spring 2009
  113. Functional Analysis Gabriel Nagy Kansas State University Fall 07 - Spring08
  114. Functional Analysis course notes MT 4515 Kenneth Falconer St.Andrews' University

  115. FUNCTIONAL ANALYSIS NOTES Andrew Pinchuck (Pure & Applied) Rhodes University 2o11
  116. Functional Analysis — An Elementary Introduction Markus Haase  Delft University of Technology,
  117. Applied Functional Analysis (MAGIC062)
  118. Local Theory of Banach Spaces Fall 2010 Scribe: Evan Chou New York University
  119. Lecture Notes of Functional Analysis - Part 1 Sisto Baldo University of Verona
  120. Introduction to functional analysis Boris Tsirelson Tel Aviv University 2009
  121. Functional Analysis (Math 920) Lecture Notes for Spring `08 Je Schenker Michigan
    State University
  122. Functional Analysis Richard Bass University of Connectuit
  123. Linear Analysis Revision Notes Lectured: Dr. Stefan Teufel Notes: James Beardwood LaTeX: Tim
    Sullivan Term 2, 2003–2004 Printed September 25, 2007
  124. Calculus: Dangerous and Illegal Operations Paul Garrett University of Minnesota AA1H

    Lectures on Operator K-Theory and the Atiyah-Singer Index Theorem Nigel Higson and John Roe
  125. An introduction to some aspects of functional analysis Stephen Semmes Rice University
  126. Functional Analysis: Spectral Theory V.S. Sunder Institute of Mathematical Sciences
    Madras 600113 INDIA July 31, 2000
  127. Banach Spaces lectured by Dmitry Belyaev based on notes by B. Kirchheim and CJK
    Batty University of Oxford Michaelmas 2013
  128. Functional Analysis Jan Kristensen Mathematical Institute University of Oxford 2013
  129. Functional Analysis R.R. van Hassel Technische Universiteit Eindhoven Fall 2012
  130. An Introduction to Operator Algebras LaurentW.Marcoux University of Waterloo March30,2005
  131. Functional Analysis Lectures  D Salamon February 12, 2007
  132. Lecture Notes on C  -Algebras, Hilbert C  -modules, and Quantum Mechanics Draft: 8 April 1998 N.P. Landsman Korteweg-de Vries Institute for Mathematics, University o f Amsterdam 1998
  133. Notes on Operator Algebras John Roe Penn State Fall 2000
  134. Operator Algebras And Topology Thomas Schick Mathematisches Institute Gottengen
  136. K -THEORY Lecture Notes DANA P. WILLIAMS Darthmouth University
  137. K -THEORY OF OPERATOR ALGEBRAS Rainer Ma tthes Wojciech Szymanski  University of Southern
  138. Functional Analysis I--II - Spring 2009 Math 756 -757 Maria Girardi University of South Carolina
  139. Functional Analysis Donald Estep Colorado State University 2012  Course Materials
  140. Spectral Theory notes as homework A.Sangupta LSU Math 7330 2005
  141. Measure Theory and Functional Analysis Lecture Notes P. Cannarsa & T. D’Aprile Dipartimento di Matematica Universit`a di Roma “Tor Vergata”
  142. Banach and Hilbert Spaces Lecture Notes 2008 2009 Vitaly Moroz Department of Mathematics
  143. Notes on Functional Analysis Adam S. Bowman Virginia Tech November 20, 2013
  144. Graduate Functional Analysis I John Roe Penn State University lecture notes 2009
  145. Graduate Functional Analysis II John Roe Penn State University Fall 2009
  146. Notes on Operator Algebras Penn State University John Roe Fall 2000
  147. FUNCTIONAL ANALYSIS 1 Douglas N. Arnold University of Minnesota
  148. Supplemental notes on Hilbert spaces Tim Hsu, San Jos ?e State University December 9, 2013
  149. Functional Analysis Eric A. Carlen 1 Rutgers University January 30, 2013
  150. Topology/Geometry I Lecture Notes-SPACES: FROM ANALYSIS TO GEOMETRY AND BACK Paul
    Siedel Penn State University Fall 2011
    (PG-13)  These are notes for an unusual and intensive second course/seminar in point set topology focusing on the role general topology plays in the structure of function spaces, primarily Banach spaces. Ir's purpose is illuminating the central role that metric spaces and their topologies play in both classical and modern analysis as preparation for graduate courses in integration and functional analysis.  The following excerpt from the introduction really describes the intent and purpose of the course better then I could:
  151. There are many problems in analysis which involve constructing a function withdesirable properties or understanding the properties of a function without completely precise information about its structure that cannot be easily tackled usingdirect “hands on” methods. A fruitful strategy for dealing with
  152. such problems is to recast it as a problem concerning the geometry of a well-chosen space of functions,thereby making available the many techniques of geometry. For example,one can construct solutions for a large class of ordinary differential equations byapplying the “contraction mapping principle” from the theory of metric spaces toan appropriate space of continuous functions.......The goal of this course is to investigate some of the basic ideas and techniques which drive this interplay. It's not really a functional analysis course, although it certainly has considerable overlap with such a course. It can best be described as a transitional course showing how functional analysis is a natural outgrowth of using topological methods to indirectly attack problems in analysis via function spaces. I've always thought such a course would be very helpful for students to take before taking their first year graduate course, as this material is usually left for graduate courses in functional analysis and operator theory, and occasionally, advanced courses in differential manifolds modeled on Banach spaces.