Jun 15
  1. Applied Mathematics



The physicist, in his study of natural phenomena, has two methods of making progress: (1) the method of experiment and observation, and (2) the method of mathematical reasoning. The former is just the collection of selected data; the latter enables one to infer results about experiments that have not been performed. There is no logical reason why the second method should be possible at all, but one has found in practice that it does work and meets with reasonable success.


  • Paul Dirac
  1. Applied Probability Matthias Winkel Mathematical Institute University of Oxford 2010
  2.  Calculus for Biology I Joseph M. Mahaffy San Diego State University Fall 2012
  3. Applied Abstract Algebra Fields and Error Correcting Codes Spring 2012 Aravind Asok
    University of Southern California Course Materials
    Applied Statistics I Eleni Matechou Oxford University MT 2013
  4. Part B Statistical Lifetime Models James Martin Oxford University 2014
  5. Computing with Geometry Notes C.-K. Shene Michigan Technological UniversityComputational Geometry 1 David M. Mount University of Maryland Spring 2010Curves and Surfaces In Geometric Modeling: Theory And Algorithms Jean Gallier  University of Pennsylvania



    Geometry with Computers Computer-Based Techniques to Learn and Teach Euclidean
    Geometry Tom Davis Silicon Graphics

    Mathematical Modeling Eleftherios Gkioulekas University of Texas Pan American 

    Math for Electrical Engineers Eleftherios Gkioulekas University of Texas Pan American 

    Mathematical Biology  Jeffrey R. Chasnov The Hong Kong University of Science and Technology

    MATHEMATICAL CRYPTOLOGY Keijo Ruohonen (Translation by Jussi Kangas and Paul
    Coughlan) 2010

    Cryptography and Network Security Xiang-Yang Li Illinois Institute of Technology 

    Cryptography Lecture Notes by Oded Goldreich Weizmann Institute 1996

    Cryptography Lecture Notes S. Goldwasser and M. Bellar University of Califorina San

    Applied Mathematics Lecture Notes Peter J. Oliver University of Minnesota December 14,

    Modern Cryptography Phil Rogaway University of California at Davis Winter 2000 

    Computational Molecular Biology Semester I Graham Ellis NUI Galway

    Methods of Applied Mathematics Lecture Notes William G. Faris University of Arizona May
    14, 2002

    Voting, Arbitration, and Fair Division The mathematics of social choice Marcus Pivato
    Trent University March 10, 2007

    Statistical Signal Processing by R M Grey Stanford University

    Mathematical Modelling From Applied Sciences to Complex Systems Nicola Bellomo, Elena DeAngelis, Marcello Delitala  Politecnico Torino - Italy

    MATHEMATICAL ECONOMICS 1 Alexander W. Richter Auburn University February 2013

    Mathematical Modeling Lecture Notes Jeff S. McGough South Dakota School of Mines and Technology

    Mathematical Biology and Ecology Ruth E. Baker Oxford University Michaelmas Term 2011

    Elements of Mathematics For Bioinformatics Lecture Notes Elisenda Feliu University of Copenhagen 2007-2008

    The Digital Nature of Biology  Ridgeway Scott University of Chicago Winter quarter 2013

    Digital Biology L. Ridgway Scott University of Chicago Ariel Fernandez Rice University January 26, 2013

    Software Engineering Clark W. Barrett NYU

    Programming Languages Clark Barrett NYU Spring 2012

    Introduction to Cryptography Yevgeniy Dodis NYU Fall 2006

    Computer Vision: Algorithms and Applications Richard Szeliski,Microsoft Research 2010  

    Linear and Nonlinear Dispersive Waves DRAFT M.I. Weinstein Columbia University October 22, 2006  

    Introduction to Microlocal Analysis Fall 2009 Peter Kuchment Texas A&M University

    Random walks and electric networks Peter G. Doyle J. Laurie Snell Book Draft:Version
    dated 5 July 2006 GNU FDL

    Mathematical Biology: Discrete and Probabilistic COURSE NOTES by Daniel Ocone
    Rutgers University

    Cryptology Wesley Pegden Rutgers University Version: January 19, 2010

    Mathematical Systems Biology Eduardo D. Sontag, Rutgers University 2013 Version

    Mathematical Modeling Jerry Alan Veeh Auburn University August 8, 2003

    Actuarial Mathematics Jerry Alan Veeh Auburn University May 1, 2006  

    Modeling with Differential Equations Carnigie Mellon University 21-124 

  6. Mathematical Methods lecture notes 231 SF Trinity College Dublin231 SF
  7. Modeling and Simulation lecture notes  Peter Olsson Oleg Seleznjev Claude Lacoursiere
    Universtat Umea
    Topics in Applied Mathematics:Random Processes. 2007 Course Materials Renato FERES. Washington University. St. Louis.

    Random Signals and Noise John STENSBY University of Alabama at Huntsville Summer 2015 

    Mathematical Methods Raymond Brummelhuis Univeristy of London 

    A short course on mean eld spin glasses Anton Bovier and Irina Kurkova University of Bonn

    Methods of Applied Mathematics Todd Arbogast and Jerry L. Bona  The University of Texas at Austin 2008 

    Percolation Ariel Yadin Ben Gurion University Department of Mathematics Spring 2013

    Image Processing Lenya Ryzhik Stanford University Lecture notes for Math 221 Winter 2013 February 28, 2013

    Mathematical Introduction to Robotic Manipulation By Z.X. Li and Y.Q.Wuj ‡Dept. of ECE, Hong Kong University of Science & Technology

    Parameter Estimation L. T. Biegler  Carnegie Mellon University Pittsburgh March 30, 2000

    Systems of Linear Equations L. T. Biegler Carnegie Mellon University February 18, 2000

    Systems of Nonlinear Equations Part II L. T. Biegler Carnegie Mellon University February 24, 2000

    Mathematical Biology Lecture Notes Eduardo D. Sontag, Rutgers University, 2005,2006

    Applied Finite Mathematics Collection Editor Rupinder Sekhon Online:  C O N N E X I O N S Rice  University

    Advanced Cryptography Yevgeniy Dodis Courant Institute of Mathematical Sciences New York University Fall 2009 COURSE NOTES

    Cryptography Yevgeniy Dodis Courant Institute of Mathematical Sciences New York
    University Spring 2001 COURSE NOTES

    Mathematical Methods of Engineering Analysis Erhan C inlar Robert J. Vanderbei
    Princeton University February 2, 2000 

    Automated Solution of Differential Equations by the Finite Element Method 

    Applied Mathematics Peter J.Oliver University of Minnesota and Chebrzad Shakiban University of St.Thomas 

    Neural Networks Ben Krose Patrick van der Smagt 8th ed November 1996 

    Cryptography Shafi Goldwasser University of Cambridge and Mihir Bellare MIT
    August 2001 

    Mathematical Linear Programming Richard Barraclugh University of Burmingham MSMYM1 

    Mathematics of Biology with Computer Algebra Models Edward K. Yeargers Ronald W.
    Shonkwiler and James V. Herod (Maple code)

    Mathematical Programming: An Introduction to the Use of Maple with Applications
    by James Herod Georgia Tech 


     Linear Methods of Applied Mathematics Evans M. Harrell II and James V. Herod
    Georgia Tech University

     Coding and Cryptography T. W. Korner University of Cambridge May 30, 2012

    Green Avi Wigderson 1

    Mathematical Biology:Topics in Mathematics and Biochemistry-Biophysics Bo Li Spring 2011 USCD

    Scattering Theory Lecture Notes David Colton University of Delaware 2010 

    Mathematical Biology David Swigon University of Pittsburgh Fall 2005 Course 

    LINEAR PROGRAMMING A Concise Introduction Thomas S. Ferguson UCLA 

    Linear Algebra, Infinite Dimensions, and Maple by Jim Herod Georgia Tech

    Techniques of Applied Mathematics Helen Lowe Mathematical Institute  University of Oxford

    Mathematical Physiology S.J.Chapman.AC Fowler & R Hinch Oxford University

     C++ for Scientific Computing: Joe Pitt-Francis Oxford University 2012-2013 Course Materials

    Computational Methods in Biology Lecture Notes Richard Bertram Florida State  Cryptography

    Introduction to Cryptography I Nigel Boston University of Wisconsin-Madison  Spring 2007

    Topics in Applied Mathematics  Mathematical Aspects of Mixing Jean-Luc Thiffeault University of Wisconsin-Madison Spring 2013 Course Materials


     Methods of Applied Mathematics I: Fall  2012 Jean-Luc Thiffeault University of Wisconsin-Madison Math 703  

    Applied Mathematical Analysis II: Spring 2012 Math 322 Jean-Luc Thiffeault University of Wisconsin Madison

    Waveform design and quantum detection matched filtering John J. Benedetto University of

    Waveform design and Sigma-Delta quantization John J . Benedetto University of Maryland

    Principles of Complex Systems, Season 6 Peter Sheridan Dodds University of Vermont 2013 

    Complex Networks Course CSYS/MATH 303, Spring 2009 Peter Sheridan Dodds University of Vermont

    Cryptography:An Introduction Network Associates, Inc. and its Affiliated Companies

    Applied Linear Algebra Math 104 Stanford University Fall 2008 Class notes
    Laurent Demanet MIT Draft December 1, 2008

    Applied Mathematics 18.325 - Waves and Imaging Fall 2012 - Class notes
    Laurent Demanet Draft December 5, 2012

    Coding Theory & Cryptography John C. Bowman University of Alberta Edmonton, Canada
    January 17, 2010  


    Introduction to Theory of Computation Anil Maheshwari Michiel Smid School of
    Computer Science Carleton University October 3, 2012 

    Mathematical Physics Course Materials Laszlo Erdos 2008

    Information Theory Even Chou New York University

    Discrete Mathematical Modeling Ann Greenbaum University of Washington Math
    381 Course Notes 2006 

    Notes on Multilinear Algebra and Tensor Calculus (For the course Geometrical
    Methods in Mathematical Physics) Valter Moretti University of Trento Italy 2005-2006

    DIV.GRAD AND CURL ARE DEAD by William L Burke (posthumous manuscript) 

    Applied Analysis Lenya Ryzhik Stanford University 2006  

    Lecture Notes on Cryptography Shafi Goldwasser1 Mihir Bellare University of
    California San Diego July 2008

    Mathematical Models in Physics: Relativistic Electrodynamics and Differential Forms James Cook  NCSU

    Tensor Techniques in Physics – a concise introduction Roy McWeeny Professore Emerito
    di Chimica Teorica, Universit`a di Pisa, Pisa


    Physics by Geometry William G. Harter University of Arkansas Fayetteville Spring 2008 Honors Colloquium Physics 3923H

    Linear Methods of Applied Mathematics   Orthogonal series, boundary-value problems, and integral operators  by Evans M. Harrell II and James V. Herod 2000 .

    Advanced Cryptography Yevgeniy Dodis NYU Fall 2009 

    Computational Geometry David M. Mount Department of Computer Science University of
    Maryland CMSC 754 Fall 2002

    Information Networks Cryptography and Cryptanalysis Anna Lysyanskaya MIT Fall 2001

    Introduction to Computational Topology Bala Krishnamoorthy Wichita State
    University 2012

    Linear Control Claudiu C. Remsing RHODES UNIVERSITY 2006  

    Geometry and Topology in Electronic Structure Theory Raaele Resta Università di Trieste Fall 2013 Version 

    Quantum Mechanics for Mathematicians Peter Woit Columbia University Fall 2014

     Mathematical Modeling Joseph M Mahaffy San Diego State University 2013


    Nonlinear Systems by Peter J. Olver University of Minnesota  

    Mathematical Techniques III Jose Figueroa-O'Farrill Queen Mary College of the
    University of London December 5, 2004

    METHOD OF ANALYSIS Siu - Cheong Lau Harvard University Fall 2013

    Geometry and Relativity John Roe Penn State University December 27, 2003

    Notes on cryptography Peter J. Cameron School of Mathematical Sciences Queen Mary University of London  

    Notes on complexity Peter J. Cameron School of Mathematical Sciences Queen Mary University of London  

    CODES AND CRYPTOGRAPHY Michaelmas 2013 T. K. Carne 21 November, 2013

    Cryptography Lecture Notes from CS276 Spring 2009 Luca Trevisan Stanford University Lecture Notes on Cryptography Shafi Goldwasser and Mihir Bellare MIT July 2008

     Introduction to Modern Cryptography Mihir Bellare and Phillip Rogaway UCSD 2007

    Lecture in Information Theory Part I by Fady Alajaji and Po-Ning Chen Queen’s University Kingston,

    Lecture in Information Theory Part II by Fady Alajaji and Po-Ning Chen Queen’s University Kingston,

    An introduction to Lagrangian and Hamiltonian mechanics Lecture notes Simon J.A. Malham Heriot-Watt University

    Introductory fluid mechanics Simon J.A. Malham Heriot-Watt University November 2012  

    Introduction to applied mathematics Simon J.A. Malham Simon J.A. Malham
    Heriot-Watt University November 2012

    Applied Partial Differential Equations and Complex Variables Thomas Witelski
    Duke University Fall 2013  

    Introduction to Mathematical Economics I Professor Ariell Reshef University of

    Languages And Machines Christopher Cooper McQuarrie University  


    Cryptography Christopher Hughes University of York 2012-2013