27
Jun 15
  1. Ring, Modules And Field Theory 

What’s the big ideal? — Algebra professor

Pi is transcendental, but the proof is
beyond the scope of this course. Here’s a meta-proof: if there were
some polynomial somewhere with pi as a root, it’d be famous and you’d
all know about it. You don’t, so there can’t be such a polynomial, and
hence pi is transcendental.

  • — Galois Theory course, Professor Kevin Buzzard, Imperial College London
  1. Rings  & Fields Stefan Waner Hofstra University 2003
  2. Rings Alistair Savage  University of Ottawa Winter 2013 
  3. Ring Theory Charudatta Hajarnavis Notes by Florian Bouyer 2011.
  4. Quadratic Forms Marco Schlichting Notes by Florian Bouyer 26th October 2012
  5. Modules and Homological Algebra Karl-Heinz Fieseler Uppsala 2012
  6. Rings Modules Lectured by Charudatta Hajarnavis Typed by Tim Sullivan University of Warwick Term 1, 2003–2004 Printed May 11, 2004
  7. Ring Theory Christopher Cooper McQuarrie University
  8. Hypercomplex Numbers (Algebras) Tony Sudbery York University Maths Society
  9. DIFFERENTIAL ALGEBRA Alexey Ovchinnikov Queens College of The City University of New York written by: Maxwell Shapiro Fall 2013