28
Jun 15
  1. Partial Differential Equations(Graduate Level) 

  2.       Thus the partial differential equation entered theoretical physics as a handmaid, but has gradually become mistress. -Albert Einstein
  3. Björn E.J. Dahlberg and Carlos E. Kenig, Harmonic Analysis and Partial Differential Equations (Postscript version)
  4. Diffusions, superdiffusions and PDEs E. B. Dynkin  Cornell University
  5. PDEs By G.B. Folland Tata Institute of Fundamental Research Bombay 1983
  6. PDEs:An Introduction John Douglas Moore USCD May 21, 2003
  7. Partial Differential Equations I D. A. Edwards University of Delaware Spring 2013
  8. PDEs Peter J. Olver University of Minnesota February 17, 2012
  9. PDEs I: Linear PDEs Hans-Dieter Alber Technische Universitat Darmstadt 2012 
  10. Entropy and PDEs Lawrence C. Evans  University of California at Berkeley
  11. PARTIAL DIFFERENTIAL EQUATIONS Fall 2010 Viktor Grigoryan University of California, Santa Barbara
  12. Partial Differential Equations Erich Miersemann  Leipzig University Version October, 2012
  13.  Partial Differential Equations (Undergraduate) Jared Speck MIT Fall 2011
  14. Mathematical Analysis of PDEs Modeling Electrostatic MEMS Pierpaolo Esposito Nassif Ghoussoub Yujin GuoUNIVERSITÀ DEGLI S TUDI “ROMA T RE ”,
  15. PDEs for Finance, Spring 2011 Robert V. Kohn Professor of Mathematics Courant Institute, New York University 
  16. Graduate Analysis: PDEs on Abstract Spaces Sergiu Klainerman Princeton University 2011
  17. Partial Differential Equations DRAFT Michael I. Weinstein Columbia University April 28, 2008
  18. Graduate PDEs Jim Herod Georgia Tech Winter Quarter, 1998 
  19. Applications of PDEs to Some Problems in Differential Geometry Jerry Kadzan University of Pennsylvania  
  20. PARTIAL DIFFERENTIAL EQUATIONS B. Neta Naval Postgraduate School September 15, 2009
  21. PDEs SOLUTIONS OF PROBLEMS IN LECTURE NOTES B. Neta Naval Postgraduate School March 24, 2008
  22.  Lectures on PDEs Rick Salmon USCD   
  23. PDEs Nicolas Lerner Universite Pierre et Marie Curie (Paris 6) February 24, 2011 
  24.  Introduction to PDEs Ilyasse Aksikas  University of Alberta 2007
  25. Advanced PDEs with Applications  Mathematics  MIT OpenCourseWare The focus of the course is the concepts and techniques for solving the partial differential equations (PDE) that permeate various scientific disciplines. The emphasis is on nonlinear PDE. Applications include problems from fluid dynamics, electrical and mechanical engineering, materials science, quantum mechanics, etc. 
  26. PDEs: Graduate Level Problems And Solutions by Igor Yanovsky
  27.  
  28. Partial Differential Equations Notes At Oxford by Mark Joshi and Wasserman
  29. Partial Differential Equations | Mathematics | MIT OpenCourseWare This section lists the lecture topics covered in the course along with the respective files.
  30. Fourier Series and PDEs Ruth E. Baker Hilary Term 2013 University of Oxford
  31. PARTIAL DIFFERENTIAL EQUATIONS  Arjen Doelman  Universiteit van Amsterdam 2006-2007
  32. MIT OpenCourseWare | Mathematics | 18.306 Advanced PDEs with Applications, Spring 2004 | Home A comprehensive treatment of the theory of partial differential
    equations (pde) from an applied mathematics perspective. Equilibrium, propagation, diffusion, and other phenomena. Initial and boundary value problems. Transform methods, eigenvalue and
    eigenfunction expansions, Green's functions. Theory of characteristics and shocks. Boundary layers and other singular perturbation phenomena. Elementary concepts for the numerical solution of pde's. Illustrative examples from fluid dynamics, nonlinear waves, geometrical optics, and other applications. 
  33. Partial Differential Equations Notes Jalal Shatah Eduardo Corona Spring 2009 NYU
  34. Stochastic PDEs Mihaly Kovacs and Stig Larsson  Chalmers University
    of Technology and University of Gothenburg
  35. Applied Partial Differential Equations Helen Byrne University of Oxford 2013
  36. Partial Differential Equations:Parameter Identification University of Linz WS 2005/06 Barbara Kaltenbacher
  37. Weak KAM Theory and Partial Differential Equations Lawrence C. Evans University of California, at Berkeley
  38. Partial Differential Equations Govind Menon Brown University 1 Dec. 2005 
  39. Partial Differential Equations LAWRENCE SCHOVANEC and DAVID GILLIAM TEXAS TECH
    UNIVERSITY
  40. Partial Differential Equations and Monge–Kantorovich Mass Transfer Lawrence C. Evans  University of
    California at Berkeley
  41. Partial Differential Equations I  Gantumur Tsogtgerel McGill University Fall 2012
  42. Partial Differential Equations: An Introduction to the Finite Element Method (FEM) for Differential Equations and Fourier Analysis Mohammad Asadzadeh Chalmers University January 20, 2010
  43. Partial Differential Equations I Bruce R. Sutherland University of Alberta 
  44. Stochastic  PDEs Mihaly Kovacs and Stig Larsson  Chalmers University of Technology and University of Gothenburg December 15, 2008
  45. PARTIAL DIFFERENTIAL EQUATIONS LECTURE NOTES 4TH EDITION Tadeusz STYS University of Botswana February 2011
  46. Stochastic PDEs Lectures given in Fudan University, Shanghai  April 2007  E. Pardoux Marseille, France
  47. AN INTRODUCTION TO DISPERSIVE PDEs NIKOLAOSTZIRAKIS UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN
  48. Fourier Analysis and PDEs Nathan Kutz University of Washington
  49. Diffusion Problems and PDEs S. R. S. Varadhan Notes by P  Muthuramalingam Tara R. Nanda Tata Institute of Fundamental Research, Bombay 1989
  50. Finite Element  Methods for PDEs Endre Suli Oxford University February 23, 2012
  51. MIT OpenCourseWare | Mathematics | 18.303 Linear PDEs Fall 2006 | Home The classical partial differential equations of applied mathematics: diffusion, Laplace/Poisson, and wave equations. Methods of solution, such as separation of variables, Fourier series and transforms, eigenvalue problems. Green's function methods are emphasized. 18.04 or 18.112 are useful, as well as
    previous acquaintance with the equations as they arise in scientific applications.
  52. Partial Differential Equations of Mathematical Physics William W. Symes  Rice University Spring 2012
  53. Exterior Differential Systems and Euler-Lagrange PDEs Robert Bryant Phillip Griffiths Daniel Grossman February 1, 2008
  54. Entropy and Partial Differential Equations Lawrence C. Evans University of California at Berkeley
  55. Partial Differential Equations K. Kuttler Bringham Young University May 1,2002 
  56. Partial Differential Equations Jerry Kadzan University of Pennsylvania Spring 2011
  57. Mathematical Analysis of PDEs Modeling Electrostatic MEMS Pierpaolo Esposito  DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI “ROMA TRE” Nassif Ghoussoub UNIVERSITY OF BRITISH COLUMBIA and  Yujin Guo UNIVERSITY OF
    MINNESOTA
  58. PARTIAL DIFFERENTIAL EQUATIONS 2 O.J. ADENIRAN UNIVERSITY OF AGRICULTURE, UNAB. ABEOKUTA. Pogramme Leader AJIBOLA. National Open University of Nigeria Lagos.
  59. Partial Differential Equations : Graduate Level Problems and Solutions
  60.  Partial Differential Equations by Mark Joshi and Tony Wasserman
  61. Finite Element Methods for Partial Differential Equations Endre Suli Mathematical Institute University of Oxford
  62. Partial Differential Equations: Regularity Theory for the Navier-Stokes Equations G. Seregin Oxford University August 14, 2012 
  63. Partial differential equations Fall 2011 Viktor Grigoryan USCD Homepage These is the homepage of Viktor Grigoryan's upper-level undergraduate PDE course at the University of California San
  64. Diego. His notes are quite good and original. They're careful but not quite rigorous. They emphasize practical methods of computation and concrete physical applications,as a course in PDE's at this level should. At the same time though, Grigoryan works very hard to make sure he doesn't do too much handwaving and motivates thoroughly every concept. The result is that this is a very versatile presentation-it can work well either as a "practical" course for undergraduates with minimal training-as the original course seems to be-or it can supply much-needed intuition to a rigorous graduate level treatment such as Lawerance Evans' book or any level of PDE course in between. I particularly think
    they'd be very helpful alongside Zamanglou and Thoe's book. 
  65. Asynchronous Studies in Undergraduate PDEs James Herod Georgia Tech
  66. Partial Differential Equations James Herod Georgia Tech
  67. Partial Differential Equations for Finance S.R.Srinivasa Varadhan New York University Spring 2002 
  68. Partial Differential Equations Joel Feldman University of British Columbia
  69.  Fixed Point Methods for Nonlinear Partial Differential Equations | Mathematical Institute - University of Oxford
  70. Finite Element Methods for PDEs | Mathematical Institute - University of
    Oxford
  71. Partial Differential Equations | Mathematics | MIT OpenCourseWare This course provides a solid introduction to Partial Differential Equations for advanced undergraduate students. The focus is on linear second order uniformly elliptic and parabolic equations.
  72. PARTIAL DIFFERENTIAL EQUATIONS AN INTRODUCTION A.D.R. Choudary, Saima
  73. Parveen Constantin Varsan Abdus Salam School of Mathematical Sciences 2010
  74. Stochastic PDEs Martin Hairer The University of Warwick / Courant Institute July 23, 2009 
  75. Partial Differential Equations and Representations of Semi-groups By L.Schwartz Tata Institute of Fundamental Research, Bombay 1958 
  76. Linear Partial Differential Equations | Mathematics | MIT OpenCourseWare This course covers the classical partial differential equations of applied mathematics: diffusion, Laplace/Poisson, and wave
    equations. It also includes methods and tools for solving these PDEs, such as separation of variables, Fourier series and transforms, eigenvalue problems, and Green's functions.
  77. Nonlinear Analysis and Partial Differential Equations : Eduard-Wilhelm Kirr University of Wisconsin Urbana Champlain Spring 2012
  78.  Differential Equations Nonlinear Analysis and Partial Eduard-Wilhelm Kirr University of Wisconsin Urbana Champlain  Spring 2013
  79. Partial Differential Equations Ruediger Landes University of Oaklahoma Spring 2013
  80.  Partial Differential Equations Philip W. Walker University of Houston Spring 2013
  81.  Graduate Partial Differential Equations II Bruce K. Driver USCD  Spring 2004 
  82.  Microlocal Analysis M.Uribe University of Michigan
  83. Spectral Theory of Partial Differential Equations University of Illinois at Urbana Champaign Richard S. Laugesen  March 13,2012
  84. Partial Differential Equations. Kenneth Kuttler BYU December 12, 2003 
  85. Partial Differential Equations Roger Moser  University of Bath Semester 2, 2011/12 
  86. Partial Differential Equations in MATLAB 7.0 P. Howard Texas A&M University Spring 2005
  87. Partial Differential Equations W. E. Schiesser Lehigh University
  88. Partial Differential Equations I-II Richard Froese University of British Columbia 2011
  89. Analytical Solution of Partial Differential Equations  Gordon C. Everstine December 2012
  90. Spectral Theory of Partial Differential Equations Richard S. Laugesen University of Illinois at Urbana Champaign March 13, 2012

  91. Micro-local Analysis Lennie Friedlander University of Arizona 2004
  92. Introduction to Microlocal Analysis Richard Melrose MIT lecture notes 2009
  93. Differential Analysis Jeff Viaclovsky NIT Fall 2004 lecture notes 
  94. COMPLEX MONGE-AMPERE EQUATIONS 1 D.H. Phong  Columbia University  Jian Song Rutgers University and Jacob Sturm Rutgers University
  95. Spectral Theory of Partial Differential Equations Lecture Notes University of Illinois at Urbana Champaign Richard S. Laugesen 2012 
  96. Partial Differential Equations Vitali Liskevich  Swansea University 2007 
  97. Advanced PDEs Yuliya Kyrychko  University of Bristol
  98. Partial Differential Equations Written by Matthew Hutton Based on Lectures in Spring 2007, updated January 9, 2008 University of Warwick
  99. SECOND ORDER ELLIPTIC PDES WEIYONG HE University of Oregon
  100. Optimal Control of Partial Differential Equations Peter Philip Revised and Extended for the Class of Spring Semester 2009 at LMU Munich  December 19, 2012
  101. Partial Differential Equations Steve Shkoller University of California Davis June 7, 2012
  102. Graduate PDE lecture notes Micheal Taylor University of North Carolina 
  103. Boundary Problems for Wave Equations With Grazing and Gliding Rays Richard Melrose MIT and Mic hael Taylor University of North Carolina
  104. Partial Differential Equations John K. Hunter  University of California at Davis
  105. PDEs for a Metro Ride Alex Kiselev  Jean-Michel Roquejo Lenya Ryzhik  November 30, 2012 University of Wisconsin
  106. Analytic Solutions of PDEs D. Lesnic  University of Leeds
  107. Theory of PDEs  Roger Moser Bath University
  108. Semi-Classical Analysis Victor Guillemin and Shlomo Sternberg March 13, 2013 
  109. Linear Elliptic Equations of Second Order Erich Miersemann  Leipzig University Version
    October, 2012
  110. Partial Differential Equations William G. Faris The University of Arizona June 3, 2004
  111. MICROLOCAL ANALYSIS AND EVOLUTION EQUATIONS: LECTURE NOTES FROM 2008
    CMI/ETH SUMMER SCHOOL November 7, 2012 JARED WUNSCH
  112. Partial Differential Equations Lecture Notes Kenneth Kuttler Bingham Young University December 12, 2003
  113. SPECTRAL THEORY AND PDES ANDREW TULLOCH University of Sydney -
  114. Elliptic PDE Part III Will Merry University of Cambridge 2007 
  115. Seminar:Inverse Problems for PDE's University of British Columbia
  116.  Finite Element Methods Spring 2011 Ronald H.W. Hoppe University of Houston
  117. Probabilstic Methods in Nonlinear PDE Solutions Ken McLaughlin University of Arizona 2008
  118.  Graduate Partial Differential Equations William G. Faris University of Arizona May 17, 1999
  119. Schrodinger evolution and geometry Jared Wunsch Northwestern University  2007
  120. Partial Differential Equations Spring 2013 Andrej Zlatos University of Wisconsin Madison
  121. Lecture Notes on Partial Differential Equations Part II Atile Caglar Argus Dunes Jonathan Holland Edward Krisner and Jason R. Morris Xiufu Chen(Lecturer) University of Pittsburgh April 25, 2001 
  122. 18.303: Linear PDEs Daniel Freedman MIT Fall 2009 
  123.  Linear Partial Differential Equations: Analysis and Numerics Steven G. Johnson Fall 2012 
  124. Linear Partial Differential Equations and Fourier Theory Marcus Pivato Trent University
  125. PDEs:Computational Methods Laurent Demanet MIT Spring 2011 
  126.  Graduate Partial Differential Equations Lenya Ryzhik Stanford University 2011
  127. PDEs and Diffusions Lenya Ryzhik February 19,2013
  128.  Introduction to Partial Differential Equations Birne Binegar Oklahoma State University 2012
  129. Partial Differential Equations Birne Binegar University of Oklohoma Spring 1996
  130. Elementary Partial Differential Equations William V Smith Brigham Young University
  131. Solutions to Exercises In Lawrence Evans' "Partial Differential Equations",1st Editiion
  132. Partial Differential Equations of Mathematical Physics William W. Symes Rice University, Spring 2012
  133. LECTURES ON INDICES AND RELATIVE INDICES ON CONTACT AND CR MANIFOLDS CHARLES EPSTIEN UNIVERSITY OF PENNSYLVANIA 2003
  134. Microlocal Analysis: Basic analysis for students of pseudodifferential operators Charles Epstien University of Pennsylvania 1997 
  135. Microlocal Analysis:Elliptic boundary value problems for the Laplace operator Charles Epstien
    University of Pennsylvania 1997
  136. MicrolocalAnalysis: Pseudodifferential Methods for Boundary Value Problems Charles Epstien University of Pennsylvania 1997
  137. ANALYSIS ON NON-COMPACT MANIFOLDS  SPRING 2008 PIERRE ALBIN University of Illinois Urbana-Champlain
  138. Hilbert Space Methods for Partial Differential Equations R. E. Showalter 
  139. ANALYTIC SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS Evy Kersalé.University of Leeds
  140. A First Course of Partial Differential Equations in Physical Sciences and Engineering Marcel B. Finan
    Arkansas Tech University August 2009
  141. Ordinary and Partial Differential Equations An Introduction to Dynamical Systems John W. Cain, Ph.D. and Angela M. Reynolds, Ph.D. 
  142. Introduction to nonlinear geometric PDEs Thomas Marquardt ETH Zurich October 15, 2013
  143. Notes on Partial Differential Equations John K. Hunter University of California at Davis 2013
  144. Applied Partial Differential Equations Pascale Garaud University of California at Santa Cruz
  145. Partial Differential Equations III-IV Anthony Yeates University of  Cambridge 2013-2014
  146.  Partial Differential Equations Vladimir G. Tkachev Matematiska institutionen Linköpings universitet 2009
    Introduction to Partial Differential Equations  David Stuart University of Cambridge
  147. Introduction to Partial Differential Equations (advanced)
  148. Partial Differential Equations with Maple Robert Piche and Keijo Ruohonen Tampere University of Technology December 1997
  149. Introduction to PDEs Martina Chirilus-Bruckner University of Sydney WINTER 2013
  150. Partial Differential Equations Eugene Kashdan based on the notes of Dr Lennon  O'Naraigh University College Dublin September 2013
  151. The Finite Element Method Aurélien Larcher, Niyazi Cem Degirmenci Fall 2013 KTH
  152. Introduction to Variational Methods in Partial Differential Equations and Applications A Special Topics Course Baisheng Yan Michigan State University Summer 2013
  153. Computational Partial Differential Equations Long Chen University of California at Irvine Fall 2013
  154. NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS  Christian Clason  Karl-Franzens-Universität Graz October 2, 2013
  155. Lecture Notes on Elliptic Partial Differential Equations Luigi Ambrosio University of Pisa 2011
  156. Analysis on Manifolds Via The Lapacian Operator Yaiza Canzani Harvard University Fall 2013
  157. Topological Methods For Nonlinear Differential Equations R Vandervoot Vienna University 2013