26
Jun 15
  1. Number Theory,Modular Arithmetic And Divisor Theory   

  2. The mathematician Pascal admires the beauty of a theorem in number theory; it’s as though he were admiring a beautiful natural phenomenon. Its marvellous, he says, what wonderful properties numbers have. It’s as though he were admiring the regularities in a kind of crystal.- Ludwig Wittgenstein

  3. THEORY  OF NUMBERS FELIX LAZEBNIK University of Delaware 2007 
  4. Theory Of Integers Bruce Ikenaga University of Millerville 2011
  5.  
  6. Number Theory Jim Brown Clemson University  
  7. Theory of Integers WW Chen Imperial College 
  8. Number Theory I  Edwin Clark University of South Floirida
  9.  Arithmetic Michael Filaseta University of South Carolina 1997  
  10. Number Theory: A Contemporary Introduction Pete L.Clark University of Georgia 2011
  11. Theory of Arithmetic  Michael Stoll Jacobs University Spring 2006
  12. Theory of Integers Amin Witno
  13. Graduate Level Arithmetic Micheal Filaseta University of South Carolina 
  14. Arithmetic Theory Jerry Shulman Reed College  
  15. Topics in Numbers: Algebra and Geometry Ambar N. Sengupta LSU December,
    2006
  16.  Theory Of The Integers Graduate Level Ulrich Meierfrankenfeld University of Michigan April 30, 2010
  17. Algebra and Number Theory  A. Baker  University of Glasgow 2009
  18. Integer Theory Michael Filaseta University of South Carolina Fall 2010
  19. Number Theory and Algebra J B Nganou University of Oregon
  20. Advanced Divisor Theory:Anatomy of Integers Kevin Ford University of Wisconsin at Urbana Champlain Fall 2011
  21. Combinatorial Number Theory Jozsef Solymosi University of Georgia
  22.  Number theory I Fall 2009 Kimball Martin University of Oaklohoma Course Materials And
    Lecture Notes 
  23. Number Theory 2 Paul Yiu Department of Mathematics Florida Atlantic University Spring 2007
    April 8, 2007
  24. New York Theory of Numbers Seminar
  25. Zeros of L-functions and random matrix theory (Kannan Soundararajan, Spring 2004, 238 pages) Jim Brown Clemson University 
  26. Distribution of Prime Numbers by WWL Chen
  27.  Divisors and Congruences H. W. Lenstra, Jr. Univeristy of California at Berkeley Spring 1993
  28. p -adic Numbers and p -adic Analysis Andrew Baker University of Glasgow 2011
  29. ADDITIVE COMBINATORICS AND THE  INTEGERS WINTER 2007 K. Soundararajan Stanford
    University 
  30. Computational Number Theory  Fall, 2007 Homepage and Course Materials
  31. Topics in Arithmetic Samir Siksek Mathematics Institute University of Warwick
  32. A Course in Number Theory Peter J. Cameron Queens College of The University of London 
  33. Basic Theory of Integers Christopher Cooper McQuarrie University
  34. Elementary Number Theory William Stein University of Washington online Textbook
  35. Advanced Number Theory Harold Stark MIT notes by Jeff Hoffstein
  36. Combinatorial and Analytic Number Theory Robert Tijdeman University of Lieden 2007