27
Jun 15
  1. Noncommutative Algebra

 

 

Non-euclidean geometry and noncommutative algebra, which were at one time
were considered to be purely fictions of the mind and pastimes of logical thinkers, have now been found to be very necessary for the description of general facts of the physical world.-
Paul Dirac


  1. Berkeley Lectures on Lie Groups and Quantum Groups Richard Borcherds, Mark Haiman, Nicolai
    Reshetikhin, and Vera Serganova edited by Anton Geraschenko and Theo Johnson-Freyd **DRAFT** Last updated September 22, 2011
  2. Lie Algebras, Algebraic Groups, and Lie Groups J.S. Milne Version 1.00 March 11, 2012
  3. LIE ALGEBRAS Part 1 Lectured by Professor Roger Carter Typed by Tim Sullivan Autumn Term 2002 University of Warwick
  4. LIE ALGEBRAS Part 2 Lectured by Professor Roger Carter Typed by Tim Sullivan  Spring Term 2003 University of Warwick
  5. Lie Groups and Representations Peter Woit Columbia University spring 2012 Course Materials
  6. NONCOMMUTATIVE ALGEBRA PETE L. CLARK University of Georgia 2010
  7. QUADRATIC FORMS CHAPTER I: WITT'S THEORY Pete Clark University of Georgia
  8. Quadratic Forms Christopher Cooper McQuarrie University
  9. Lie Groups and Representations of Locally Compact Groups By F. Bruhat Tata Institute of Fundamental Research, Bombay 1958 (Reissued 1968)
  10. Linear algebraic groups III Brian Conrad Stanford University
  11. LIE ALGEBRAS Kiyoshi Igusa Brandies University  2011
  12. The Octonions John C. Baez  University of California Riverside
  13. Lie Algebras |Kevin McGirty Mathematical Institute  University of Oxford
  14. Vertex Algebras Christophe NOZARADAN Universit ?e Catholique de Louvain
  15. The arithmetic of quaternion algebras John Voight University of Vermont
  16. Hopf Algebras Lecture Notes Spencer Bloch University of Chicago 2007
  17. Non-Commutative Rings by Frank W. Anderson  University of Oregon Fall, 2002
  18. A primer of Hopf algebras Pierre CARTIER Institut des Hautes Etudes Scientifiques  Septembre 2006
  19. Lie Groups and Representations Timothy Murphy Trinity College Dublin
  20. Arithmetic Groups Dave Witte Morris  University of Lethbridge (Alberta)