28
Jun 15
  1. Mathematical Physics     

  2. Mathematics takes us still further from what is human, into the region of absolute
    necessity, to which not only the actual world, but every possible
    world, must conform.
    -Bertrand Russell

  3.  Biophysics Spring 2008 David Cai New York University  
  4. Mathematical Physics: Introduction to Fluid Dynamics Robert Krasny University of Michigan Math 654 Fall 2008
  5. ELEMENTARY MECHANICS FROM A MATHEMATICIAN'S VIEWPOINT (early draft of PHYSICS FOR
    MATHEMATICIANS VOLUME 1) Michael Spivak 2004
  6. Mathematical Physics Alexei Rybkin University of Alaska Fairbanks
  7. Mathematical Physics Lecture Notes and Handouts Robert Hunt Christ's College University of Cambridge 2001-2007   
  8. Mathematical Methods of Physics I  A.N.Njah, University of Agriculture, Abeokuta
  9. TURBULENCE:INTRODUCTORY LECTURES Physics, Mathematics and Modeling J. M. McDonough
    University of Kentucky
  10. Geometry and physics Shiing-shen Chern University of California at Berkeley  
  11. Mathematical methods of classical mechanics Sergei Tabachnikov Pennsylvania State University 
  12. COMPLEX GEOMETRY OF NATURE AND GENERAL RELATIVITY Giampiero Esposito 1999
  13. Mathematical Physics Sasha Voronov University of Minnesota Fall 2001
  14. Advanced Quantum Field Theory Lent Term 2013 Hugh Osborn Universtiy of Cambridge March 19, 2013
  15. Scattering Theory  Advanced Topics in Analysis Erik Koelink Delft University of Technology Spring 2006 
  16. Mathematical Methods in Quantum Mechanics With Applications to Schrodinger Operators Gerald Teschl
  17. MATHEMATICAL METHODS IN THE PHYSICAL SCIENCES Mihir Sen Joseph M. Powers University of
    Notre Dame July 2012
  18. Classical Field Theory and Supersymmetry by Daniel S. Freed University of Texas 
  19.  Quantum Mechanics Eyal Buks Lecture Notes Technion University 2014
  20. Introduction to Mathematical Physics via Oscillations Russell Hermann 2011
  21.  Quantum Field Theory program at IAS: Fall Term
  22. Quantum Mechanics for Mathematicians: Fall 2012 Course Notes Peter Woit Columbia University January 17, 2013
  23. Undergraduate Lecture Notes in Topological Quantum Field Theory Vladimir G. Ivancevic Tijana T. Ivancevic 2008
  24. Mathematical Wave Dynamics: Oliver Buhler and Alex Barnett Darthmouth University SPRING 2004
  25.  Foundations of Quantum Mechanics Roderich Tumulka Fall 2011 Rutgers University
  26.  Geometric Mechanics Leo T. Butler Central Michigan University Spring 2013
  27. Gauge Theory JOS E FIGUEROA-O'FARRILL University Of Edinborough
  28. Spin Geometry José Figueroa-O’Farrill  University Of Edinborough Version of 4th May 2010
  29. Principles of Mathematical Physics José Figueroa-O’Farrill  University Of Edinborough Version of April 27, 2006
  30. Advanced Topics in Effective Field Theory A Modular Course Offered at The University of Toronto Department of Physics Fall, 2008 by Andrew E. Blechman Wayne University
  31.  Differential Equations of Mathematical Physics G. Sweers Perugia, July 28 -August 29, 2003
  32. General Relativity Lecture Notes Peter Woit Columbia University January 16, 2013
  33. Geometry of Physics NR Wallace USCD  Spring 2012 Web Page 
  34. Mathematical Physics for Mathematicians Daniel V. Tausk Instituto de Matemática e
    Estatística da Universidade de São Paulo
  35. Eyal Buks Introduction to Thermodynamics and Statistical Physics(114016)-LectureNotes December 21, 2012 Technion
  36. Eyal Buks Geometrical Optics - Lecture Notes July 23, 2012 Technion
  37. VALUATIONS AND HYPERBOLICITY IN DYNAMICS THOMAS WARD PRODYN
    Georg-August-Universit at Gottingen 2001
  38. Celestial Mechanics Notes Set 1: Introduction to the N -Body Problem J.D. Mireles James Rutgers University January 3, 2007
  39. Celestial Mechanics  Problem Set 2: The State Transition Matrix and Method of Differential Corrections J.D. Mireles James Rutgers University December 11, 2006
  40. Celestial Mechanics Note Set 3: General Three Body Problem and the Orbital ConØgurationsof Euler and Lagrange J.D. Mireles James Rutgers University January 1, 2007
  41. Mathematical Physics: Schrödinger equations Wihilm Shlag University of Chicago 
  42. Methods of Mathematical Physics M. G. Worster University of Cambridge Michælmas
    1997
  43. Statistical Mechanics Part II Lecture Notes on Operators R.R. Horgan University of Cambridge F ebruary 14, 2005
  44. Electrodynamics M. J. Perry University of Cambridge Michælmas 1997
  45. Statistical Physics A. J. Macfarlane University of Cambridge Lent 1998
  46. Foundations of Quantum Mechanics  H. Osborn University of Cambridge Michælmas 1997
  47. General Relativity  P. D. D’Eath Lent 1998
  48. Dynamics and Relativity Stephen Siklos University of Cambridge Lent term 2011
  49. Statistics Part IB Richard Weber DAMTP, University of Cambridge Easter Term 2002,
  50. Electromagnetism Alan J Macfarlane University of Cambridge 
  51. Quantum Mechanics N.S. Manton University of Cambridge Michælmas Term 1996
  52. Methods of Mathematical Physics: Differential And Integral Equations Paul Metcalfe University of Cambridge Summer 1998
  53. Fluid Dynamics J.R. Lister University of Cambridge Michælmas 1996
  54. Lecture Notes On Fluid Dynamics (second year at Cambridge) M. E. McIntyre building
    on earlier notes by P. H. Haynes University of Cambridge 
  55. Statistical Field Theory R R Horgan Unversity of Cambridge November 3, 2011
  56. The Standard Model H Osborne The University of Cambridge 
  57. Topological Quantum Field Theory -scanned lecture notes from a course by Prof. Alexander Kirillov, Jr.
    Binghamton University 2009 
  58. Lecture Notes on Hilbert Spaces and Quantum Mechanics N.P. Landsman Institute for Mathematics, Astrophysics, and Particle Physics Radboud University 2006

  59. Mathematical Classical Mechanics Joel Feldman  University of British Columbia  Course Outline
  60. REACTION-DIFFUSION ANALYSIS MATH 350 - RENATO FERES University of Washington St.Louis
    2003
  61. MATHEMATICAL ASPECTS OF GENERAL RELATIVITY Garth Warner Department of Mathematics
    University of Washington
  62. LAGRANGIAN MECHANICS Garth Warner Department of Mathematics University of Washington
  63. Seminar:Air Quality Modeling Class Notes Fall 2001 Jiwen He University of Houston
  64. Mathematical Physics: DIFFUSION WITH VOLUME CHANGE Robert F. Sekerka Carnegie Mellon University 2000 
  65. Classical Mechanics James Sparks 2015 Mathematical Institute University of Oxford
  66. Fluid Dynamics and Waves  Waldemar Schlackow Mathematical Institute  University of Oxford
  67. Quantum Theory Paul Tod  Mathematical Institute  University of Oxford 2014
  68. Dynamics Jon Chapman (based on previous notes by David Acheson) October 31, 2012 Mathematical Institute University of Oxford
  69. Dynamics and Energy Minimization John Ball Mathematical Institute University of Oxford
  70. Viscous Flow  Sarah Waters Mathematical Institute University of Oxford 2015
  71. Waves and Compressible Flow Ian Hewitt Mathematical Institute University of Oxford 2015
  72. Electromagnetism and Quantum Theory Luis Fernando Alday Mathematical Institute  University of Oxford
  73. Solid Mechanics: Lecture Notes of Course C6.1a Oxford, 2012 Alain Goriely 2 nd October, 2012
  74. Elasticity and Plasticity Dominic Vella Mathematical Institute  University of Oxford
  75. Statistical Mechanics  Andrew Fowler Mathematical Institute  University of Oxford 2014 
  76. Topics in Fluid Mechanics Andreas Muench  Mathematical Institute  University of Oxford
  77. General Relativity I  Ricardo Monteiro Mathematical Institute 2014  University of Oxford
  78. General Relativity II  Xenia de la Ossa Mathematical Institute  2014  University of Oxford

 

  1. The General Theory Of Relativity R A Reid-Edwards University of Oxford 2010  
  2. Theoretical Physics  Fabian Essler and Uli Haisch Mathematical Institute University of Oxford  2014
  3. Mathematical Course in Theoretical Physics: John Chalker and Andre Lukas Oxford University 2010-2011
  4. Mathematical Geoscience Andrew Fowler Mathematical Institute 2014 University of Oxford
  5. TOPOLOGICAL QUANTUM FIELD THEORY KO HONDA USCD NOTES FOR MATH 635
  6. Quantum Theory for Topologists Daniel Dugger University of Oregon
  7. A Course on Large Deviations with an Introduction to Gibbs Measures 1 Firas Rassoul-Agha Timo Seppalainen 
  8. Mathematical Physics: Symmetries in mechanics University of Wisconsin Urbana Champlain Math 390 Spring 2013 Course Materials
  9. Solitons in Mathematics and Physics  V.E. Zakharov University of Arizona May 25, 2007
  10. Quantum Mechanics N. Dorey University of Cambridge Mathematical Tripos IB  2007 
  11. The Geometry of Physics Brian Weber  SUNY Stonybrook 2009
  12. Quantum Mechanics,Groups and Representations: An Introduction Peter Woit Columbia University July 23, 2014 Draft
  13. Introduction to Tensor Calculus and Continuum Mechanics J.H. Hienbockel Old Dominion University 
  14. General relativity David Lerner University of Kansas Spring, 2013
  15. Lectures on Differential Geometry of Modules and Rings G. Sardanashvily Moscow State University, Moscow,Russia 2009 
  16. Very Basic Noncommutative Geometry Masoud Khalkhali Mathematics Department,
    University of Western Ontario London ON, Canada
  17. Geometric Control of Mechanical Systems Andrew Lewis Winter 2012 Lecture Notes by Benjamin C. Wallace Queen's University 
  18. Geometric Control Theory Xiaoming Hu KTH Fall 2013
  19. Geometric Mechanics and Geometric Integration Klas Modin Chalmers University of Technology Spring 2013 
  20. Clifford algebra, geometric algebra, and applications Douglas Lundholm and Lars Svensson Department of Mathematics, KTH 2009A
  21. Lecture Course in Geometric Algebra Anthony Lasenby and Chris Doran University of Cambridge 1999
  22. ON THE SHOULDERS OF GIANTS the mechanics of Isaac Newton Gert Heckman Radboud University
    Nijmegen G.Heckman 2013