28
Jun 15
  1. Differential Manifolds: Differential Topology And Graduate Differential Geometry

  2. Manifolds are a bit like pornography: hard to define, but you know one
    when you see one. - Shmuel Weinberger
  3. Differential Forms and Stokes’ Theorem Jerrold E. Marsden California Insititute of  Technology  
  4. The exterior differential calculus l Shlomo Sternberg Harvard University December 23, 2010
  5. Smooth Manifolds and Vector Bundles Aleksey Zinger SUNY Stonybrook March 23,2011
  6. Smooth Manifolds MAT 1300F 2010/11 L. Jeffrey University of Toronto Department of Mathematics
  7. Geometry and 3-Manifolds Walter D. Neumann Appendices by Paul Norbury Columbia University
  8. Differentiable Manifolds Semester 1, 2011/12 James Vickers and Carsten Gundlach University of Southampton  January 2011
  9. Hyperbolic manifolds, discrete groups and ergodic theory Course Notes Curtis McMullen Harvard University September 5, 2011
  10. Complex Manifolds Curtis McMullen University of California at Berkeley Spring 1996  
  11. PIECEWISE LINEAR  STRUCTURES ON TOPOLOGICAL MANIFOLDS YULI B. RUDYAK
  12. Differential Manifolds II Chris Leininger University of Illiinois Chicago Spring 2010 Homepage and Course Materials
  13. Surgery on Simply-Connected Manifolds William Browder(Scanned PDF of Classic Book)
  14. Differentiable Manifolds Nigel Hitchen Mathematical Institute University of Oxford 2014 
  15. ALGEBRAIC L-THEORY AND TOPOLOGICALMANIFOLDS A.A.Ranicki University of Edinburgh
  16. Lectures on Kahler Manifolds Werner Ballmann University of Bonn
  17. BASIC GEOMETRY OF SUBMANIFOLDS WERNER BALLMANN University of Bonn
  18. Complex Analytic Manifolds by L. Schwartz Tata Institute of Fundamental Research,Bombay 1955 (Reissued 1963)
  19. Complex Geometry, Calabi–Yau manifolds and toric geometry Vincent Bouchard  Perimeter
    Institute
  20. Synthetic Geometry of Manifolds beta version August 7, 2009  Anders Kock University of Aarhus
  21. Differential Equations: Linear Analysis on Manifolds Spring 2012 Pierre Albin University of Wisconsin Urbana-Champlaign
  22. Multilinear algebra, differential forms and Stokes' theorem Yakov Eliashberg Stanford University Math 52H March 2012
  23. A Course in Metric Geometry Dmitri Burago  Pennsylvania State University Yuri Burago Steklov Institute for Mathematics at St. Petersburg  Sergei Ivanov Steklov Institute for Mathematics at St. Petersburg  
  24. CONTACT GEOMETRY KO HONDA University of California at San Diego
  25. SYMPLECTIC GEOMETRY Gert Heckman Radboud University Nijmegen G.Heckman February 8, 2013
  26. Riemannian Geometry H.M. Khudaverdian. University of Manchester Lecture Notes  Draft 20th
    May 2011
  27. LORENTZIAN GEOMETRY VIRGINIE CHARETTE AND TODD A. DRUMM University of Almora 2012
  28. KÄHLER GEOMETRY AND HODGE THEORY OLIVIER BIQUARD AND ANDREAS HÖRING Jassieu 2010
  29. Modern Geometries Dr. Vignon Oussa Bridgewater State University Math 325 December 21, 2012
  30. Sub-Riemannian Geometry Enrico Le Donne University of Jyväskylä 2010 
  31. DIFFERENTIAL GEOMETRY Philippe G. Ciarlet City University of Hong Kong Lecture Notes Series
  32. Quick Introduction to Tensor Analysis: R. A. Sharipov  Bashkir State University
  33. RIEMANNIAN GEOMETRY RICHARD L.BISHOP University of Illinois
  34. Riemannian Geometry Je A. Viaclovsky University of Wisconsin Fall 2011
  35. Symmetric Spaces Jonathan Holland Bogdan Ion 2012 based on course given at University of Pittsburgh Fall 2010 
  36. Differential Geometry Wulf Rossmann University of Ottowa Updated October 2003
  37. Complex Analytic and Differential Geometry Jean-Pierre Demailly Universite de Grenoble I Institut Fourier, version 2012
  38. Differential Geometry Zuoqin Wang University of Michigan May 1, 2012
  39. Graduate Differential Geometry Math 1350 Piotz Hajlasz University of Pittsburgh Fall 2011 Course Materiials
  40. Fibre Bundles and Differential Geometry By J.L. Koszul Notes by S. Ramanan
  41. Math 240BC Differential Geometry (Winter-Spring 2007) J. Douglas Moore UCSD
  42. Differential Geometry Ben Chow UCSD Fall 2012 Math 250A Homepage
  43. DIFFERENTIAL GEOMETRY EUGENE LERMAN University of Wisconsin Urbana Champlain 2011
  44. Differential Geometry Sergei Yakovenko  The Weizmann Institute of Science
  45. Notes on Differential Geometry by Noel J.Hicks 1966
  46. Differential Geometry 2011 Part III Julius Ross University of Cambridge 2010
  47. Differential Geometry Ivan Avramidi New Mexico Institute of Mining and Technology August 25, 2005
  48. Extrinsic Differential Geometry J.W.R Salamon ETHZ Most Recent Revision: April 18, 2008
  49. Tensor Analysis and Differential Geometry R.R. van Hassel Helmond date: 31 October 2010
  50. Differential Geometry Lecture Notes Mohammad Ghomt Georgia Tech University
  51. Differential Geometry Joshua Bowman SUNY Stonybrook Spring 2011
  52. Differential Geometry Zuoqin WANG  University of Michigan Winter 2012
  53. Advanced Differential Geometry: Courant Algebroids Schlomo Sternberg Harvard University  Spring
  54. 2012
  55. Differential Geometry Part III Lecture Notes Mihalis Dafermos University of Cambridge
  56. Differential geometry and topology lectire notes Mehrdad Shahshahani
  57. Differential Geometry in Physics Gabriel Lugo  University of North Carolina at Wilmington  1992, 1998,
    2006
  58. A Course of Differential Geometry R. A  Sharipov Bashkir State University
  59. DIFFERENTIAL GEOMETRY Joel W. Robbin UW Madison Dietmar A. Salamon ETH Zurich Fall 2013
  60. Differential Geometry and Geometric Analysis Oliver Knill CalTech University 1995
  61. Complex Manifolds and Hermitian Differential Geometry  Andrew D. Hwang University of Toronto Spring Term 1997
  62. Differential Geometry: Lectures on the Geometry of Manifolds Liviu I. Nicolaescu January 23,
    2013
  63. Differential Geometry N.R. Wallach Unversity of California San Diego 2011 
  64. Introduction to Differential Geometry II  J. Brendan Quigley University College Dublin  Spring 2009 
  65. Symplectic Geometry overview written for the Handbook of Differential Geometry, vol. 2 (F.J.E. Dillen and L.C.A. Verstraelen, eds.) Ana Cannas da Silva University of California Berkeley September 2004
  66. Differential Geometry & General Relativity 4th Printing January 2005 Lecture Notes by Stefan Waner with a Special Guest Lecture by Gregory C. Levine Departments of Mathematics and Physics, Hofstra University
  67. Differential Geometry:Minimal Surfaces Emma Carberry, Kai Fung, David Glasser,Michael Nagle, Nizam Ordulu MIT February 17, 2005
  68. Differential Topology Bjørn Ian Dundas University of Bergen 2013

  69.   DIFFERENTIAL GEOMETRY, D COURSE Gabriel P. Paternain  University of Cambridge 2012
  70. DIFFERENTIAL FORMS AND THEIR INTEGRALS Sandro Buoncristiano, Francesco Mercuri and Alcibiades Rigas
  71. Differential Geometry Part III P.M.H. Wilson written by Will Merry University of Cambridge 2007
  72. Differential Geometry and Knot Theory C.T.J. Dodson University of Manchester
  73. Modern Differential Geometry Joel Feldman University of British Columbia 
  74. Differential Geometry Brian Conrad Stanford University 2006
  75. BASIC DIFFERENTIAL GEOMETRY: CONNECTIONS AND GEODESICS WERNER BALLMANN University of Bonn
  76. BASIC DIFFERENTIAL GEOMETRY: SEMI-RIEMANNIAN METRICS WERNER BALLMANN University of Bonn
  77. BASIC DIFFERENTIAL GEOMETRY: RIEMANNIAN IMMERSIONS AND SUBMERSIONS WERNER BALLMANN University of Bonn
  78. BASIC DIFFERENTIAL GEOMETRY: VARIATIONAL THEORY OF GEODESICS WERNER BALLMANN University of Bonn
  79. Basic Differential Geometry: Global Riemannian Geometry Werner Ballman University of Bonn
  80. Differential Geometry:HOMOGENEOUS STRUCTURES WERNER BALLMANN University of Bonn
  81. VECTOR BUNDLES AND CONNECTIONS WERNER BALLMANN University of Bonn
  82. LECTURES ON SPACES OF NONPOSITIVE CURVATURE Werner Ballmann University of Bonn
  83. AUTOMORPHISM GROUPS WERNER BALLMANN University of Bonn
  84. GEOMETRIC STRUCTURES WERNER BALLMANN University of Bonn
  85. On The Geometry of Metric Spaces Werner Ballman University of Bonn
  86. Symmetric Spaces Werner Ballman University of Bonn
  87. DIFFERENTIAL GEOMETRY KO HONDA UCSD NOTES FOR MATH 535A
  88. DIFFERENTIAL GEOMETRY I KO HONDA USCD Homework NOTES FOR MATH 535A
  89. Differential Geometry II Ko Honda University of California San Diego
  90. Differential Geometry:PRINCIPAL BUNDLES, CONNECTIONS, AND HOMOGENEOUS SPACES LANCE D. DRAGER Texas Tech University
  91. Differential Geometry I Piotz Hajlasz University of Pittsburgh Fall 2010
  92. Differential Geometry II Piotz Hajlasz University of Pittsburgh Spring 2011   
  93. HONORS DIFFERENTIAL GEOMETRY FINNUR L´ARUSSON  University of Adelaide
  94. Differential Topology Bernard Badzioch University of Buffalo 2012 Course Materials 
  95. Computational Conformal Geometry Lecture Notes Topology, Differential Geometry, Complex
    Analysis David GU  Computer Science Department Stony Brook University
  96. Curves and Surfaces In Geometric Modeling: Theory And Algorithms Jean Gallier Department of
    Computer and Information Science University of Pennsylvania
  97. Differential Geometry and Lie Groups Jean Gallier Department of Computer and Information
    Science
  98. Vector Bundles On Curves Micheal Stoll University of Bonn 1995
  99. Symmetric Spaces Jonathan Holland Bogdan Ion University of Pittsburgh 2012
  100. Vector Bundles and an Introduction to Gauge Theory Steven Bradlow University of Illinois at Urbana Champaign 1998
  101. Elements of Differential Geometry  H.M. Khudaverdian. Manchester, Spring 2006
  102. Geometry II: Knots and surfaces S Majid Queen Mary University of London 2012-13 
  103. Geometry II 2009 Notes, M.A.H. MacCallum Emeritus Professor of Applied Mathematics, Queen Mary UL
  104. Differential Geometry Dmitri Zaitsev  Trinity College Dublin 
  105. Introduction to Global Analysis John Douglas Moore University of California Santa Barbara Fall, 2010
  106. Differential Geometry  John Douglas Moore  University of California Santa Barbara 2009
  107. KÄHLER GEOMETRY AND HODGE THEORY ANDREAS HÖRING University of The Sorborrne
  108. Hodge Theory Lecture Notes Part III- Anne-Sophie KALOGHIROS Imperial College
  109. Hodge theory J. Nagel Laboratoire Paul Painlevé Laboratoire de Mathématiques
  110. VECTOR BUNDLES LECTURE NOTES Mike User University of Georgia FALL 2012 
  111. Vector fields and differential forms William G. Faris University of Arizona September
    25, 2008
  112. Victor Palamodov's lectures on Riemann surfaces
  113. Dynamical systems Oliver Knill Harvard Universit  Spring semester, 2005
  114. Symplectic Geometry Ana Cannas da Silva 1 revised January 2006
  115. Rudiments of Riemann Surfaces B.Frank Jones Rice University lecture notes 1974
  116. Lie Groups Lecture Notes Vladimir G. Ivancevic and Tijana T. Ivancevic UCLA
  117. Lie groups and geometry S. K. Donaldson Imperial College March 25, 2011
  118. Ricci Flow and the Poincaré Conjecture John Morgan and ang Tian AMS CM I Ricci Flow and
    the Poincare Conjecture
  119. Lie Groups Dragan Milicic University Of Utah
  120. Riemannian Geometry Sigmundur Gudmundsson Lund University September 2012
  121. IntroductionTo Lie Groups and Lie Algebras Book Draft: Alexander Kirillov, Jr. SUNY at Stony Brook
  122. J-holomorphic Curves and Quantum Cohomology by Dusa McDuff and Dietmar Salamon May 1995
  123. Symplectic Geometry and Floer Homology Fall 2012 Micheal Sullivan University of Massachucetts
  124. Lie groups and the method of moving frames Jeanne N. Clelland MSRI Workshop July
  125. 12-23, 1999
  126. Graduate Differerential Geometry Jimmie Lawson Lousiana State University 2006
  127. A Course in Riemannian Geometry David R. Wilkins Trinity College Dublin  2005
  128. The Return of the Riemann Surface Micheal Trott
  129. Riemann surfaces, dynamics and geometry Course Notes  Harvard University Spring 1998; Spring 2000; Fall 2001; Fall 2009 C. McMullen February 15, 2011
  130. Differential Geometry Lecture held by Prof. Ilmanen Darko Pilav Simon Wood (Postscript file,excellent,check)
  131. Differential Geometry Michael E. Taylor University of North Carolina
  132. Lie Groups Michael Taylor University of North Carolina
  133. Riemann Surfaces By Way of Analytic Geometry Dror Varolin SUNY Stonybrook draft version
    2010
  134. Lie Groups Lecture Notes Keith Jones University of Binghamton December 25, 2007
  135. Three-dimensional Seiberg-Witten theory Liviu I. Nicolaescu  University of Notre Dame March 2003
  136. Kahler Geometry Andrei Moroianu Current version March 16, 2004
  137. Kahler-Ricci Flow Jian Song and Ben Weinkove Northwestern University 2012
  138. Lie Groups And Algebras N.R. Wallace USCD Winter 2011 Web Page Math 251C
  139. Basic Lie Theory Hossein Abbaspour Martin Moskowitz Laboratoire Jean Leray Département de Mathématiques Université de Nantes
  140. Hodge Theory Victor Guillemin MIT Notes, Spring 1997
  141. GEOMETRIC ANALYSIS 2010 Simon Donaldson Oxford University 2008
  142. Riemann Surfaces C. Teleman University Of Cambridge Lent Term 2001 LaTeXed by James
    Lingard
  143. Semi-Riemann Geometry and General Relativity Shlomo Sternberg Harvard University September 24, 2003
  144. Riemann Surfaces S. K. Donaldson Imperial College December 2, 2004
  145. Differentialgeometrie III Compact Riemann Surfaces . Alexander Bobenko University of Tubingen
  146. Differential Geometry Sergei Merkulov Stockholm University, spring 2006
  147. Lie algebras and Lie groups Paul Garrett University of Minnesota
  148. Riemannian Geometry Guofang Wei Math 241A UCSD Fall 2000
  149. Advanced Riemannian Geometry Guofang Wei Math 241B UCSD Winter 2000-2001
  150. Holomorphic Curves in Symplectic and Contact Geometry (Work in progress—Version 3.1) Chris Wendl Institut f ur Mathematik, Humboldt-Universite at zu Berlin
  151. Lie groups and Lie algebras Eckhard Meinrenken Lecture Notes, University of Toronto, Fall
  152. SYMPLECTIC GEOMETRY Eckhard Meinrenken Lecture Notes, University of Toronto Spring 2000
  153. Projective di fferential geometry old and new: from Schwarzian derivative to cohomology of diff
    eomorphism groups V. Ovsienk v 2 1 CNRS, InstitutGirard Desargues

  154. Riemann Surfaces Joel Feldman and Richard Froese University of British Columbia 2011
  155. LIE GROUPS AND LIE ALGEBRAS DAVID SAVITT University of Arizona 2011
  156. Geometric Analysis: Ricci flow and the Poincare conjecture David Glickenstein
    University of Arizona Math 538 Spring 2009 Course Materials
  157. Ricci Flow and the Poincare conjecture David Glickenstein University of Arizona Notes from Math 538 Spring 2009 Course Materials
  158. VECTOR BUNDLES ON RIEMANN SURFACES SABIN CAUTIS University of Southern California
  159. LIE ALGEBRAS AND THEIR REPRESENTATIONS PART III MICHAELMAS 2010 IAN
    GROJNOWSKI DPMMS, UNIVERSITY OF CAMBRIDGE TYPESET BY ELENA YUDOVINA
    STATISTICAL LABORATORY, UNIVERSITY OF CAMBRIDGE
  160. Lie Groups Valdemar Schlackow Mathematical Institute University of Oxford
  161. Lie groups E.P. van den Ban University of Urtecht Lecture Notes, Spring 2010
  162. GAUGE THEORY FOR FIBER BUNDLES Peter W. Michor Institut f ?ur Mathematik der Universit ?at
    Wien
  163. SYMPLECTIC GEOMETRY Alan Wienstien MATH 242 University of California Berkeley Fall 2005,
  164. Exterior Differential Systems By M. Kuranishi Tata Institute of Fundamental Research Bombay 1962
  165. COMPLEX GEOMETRY NOTES JEFF A. VIACLOVSKY University of Wisconsin-Madison
  166. Riemannian Geometry Nathan Dunfield University of Wisconsin Urbana Champlain At Cal Tech Math 157a Winter 2007
  167. Kahler-Ricci Flow 1 Jian Song and Ben Weinkove UCSD
  168. Compact Complex Surfaces 583C Lecture notes Paul Hacking University of Washington June
    6, 2008
  169. Smooth Manifold Theory Spiro Karigiannis  University of Waterloo  Winter 2013
  170. Lectures on harmonic functions Peter Li University of California at Irvine 2005
  171. LECTURE NOTES ON GEOMETRIC ANALYSIS Peter Li University of California at Irvine 1996
  172. Differential Topology Michael M. Wolf Technische Universität München Sommersemester
  173. DIFFERENTIAL TOPOLOGY SPRING 2012 MTH 628 Bernard Badzioch University of Buffalo Spring 2012
  174. Manifolds And Differential Forms For Undergraduates Reyer Sjamaar Cornell University 2011
  175. Calculus Manifolds A Solution Manual for Spivak ( 1965 ) Jianfei Shen School of Economics, The University of New South Wales Sydney, Australia 2010
  176. Basic Riemannian Geometry F.E. Burstall Department of Mathematical Sciences University of Bath
  177. Differentiable manifolds Lecture Notes for Geometry 2 Henrik Schlichtkrull Department of Mathematics University of Copenhagen
  178. VECTOR FIELDS Keijo Ruohonen Tampere University of Technology 2013
  179. Manifolds and Transformation Groups WS 05 — Technische Universit ?at Darmstadt
    Karl Hermann Neeb
  180. RIEMANNIAN GEOMETRY–AN INTRODUCTORY COURSE NOTES TO A COURSE BY E.P. VAN DEN BAN AND E. LOOIJENGA Universiteit Utrecht
  181. Lecture Notes on Differential Geometry Jay Wilkins University of Tennesee August 19,2008
  182. The Laplacian on A Riemannian Manifold 2nd ed(online version) by Steven Rosenberg
  183. Differential Geometry Math 840 David Lerner Kansas State University
  184. Lectures on Floer Homology Dietmar Salamon University of Warwick 1997
  185. Differential Geometry Ian Vincent University of Warwick
  186. Lie Groups Ian Vincent University of Warwick
  187. Differential Manifolds Hovhannes M. Khudaverdian University of Manchester Lecture
    Notes 2010
  188. Riemannian Geometry Hovhannes M. Khudaverdian University of Manchester Lecture Notes 2009
    Lecture Notes
  189. Geometry of Dirac Operators Daniel S. Freed  University of Texas at Austin sometime around 1987
  190. Geometry and Topology (2012/3) Scottish Mathematical Sciences Training Centre Various
    instructors
  191. differential geometry lieven le bruyn, University of Agder 1998
  192. The Nature of Differential Forms Thyer Watkins San Jose State University
  193. Differential Geometry Rob Hladky University of Rochester Spring 2008
  194. DIFFERENTIAL FORMS AND Thier Integrals Sandro Buoncristiano, Francesco Mercuri and Alcibiades Rigas
  195. An Introduction to Differential Geometry with Applications to Elasticity  by Phillippe Ciarlet Univeristy of Hong Kong
  196. MANIFOLDS WS 11/12 KARSTEN GROSSE-BRAUCKMANN University of Darmstadt 2012
  197. Differential Geometry Math 6230 Stephen C. Preston University of Colorado Spring
    2013 Homepage With Exerciises 
     (PG-13/R)A beautifully written first year graduate or honors undergraduate text that seeks to connect the classical realm of curves and surfaces with the modern abstract realm of manifolds and forms-and does a very good job, indeed. I particularly love the in-depth review of linear algebra and how it naturally extends to the language of multilinear algebra, tensors and differential forms.I suspect it's one of the final drafts of a textbook in progress, so I strongly suggest you download a copy before it's either blocked from view by a firewall or taken down to be sent off to a publisher so you'll have to sell your first born to purchase the hardcover. Highly recommended!
  198. Differential Geometry Bernhard Leeb T E Xed by Florian Gartner & Florian Stecker Mathematisches Institut der Universität München 2012/2013
  199. Differential Topology Florian Schatz Aarhus University fall 2012
  200. Lectures on Differentiable Manifolds C. S. Aravinda Chennai Mathematical Institute, Siruseri 2006
  201. LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS JIE WU National University of Singapore 
  202. Manifolds David Mond University of Warwick March 7, 2008
  203. Manifolds Exercises and Exams David Mond University of Warwick 2008
  204. Cohomology,Connections,Curvature and Characteristic Classes David Mond University of Warwick 2006
  205. Topics in Riemannian Geometry Je A. Viaclovsky University of Wisconsin Fall 2007
  206. Differentiable Manifolds I Rui Loja Fernandes University of Illiinois Urbana-Champlaign Fall 2013
  207. Differential Calculus over General Base Fields And Rings W. Bertram Universite Nancy I et al 
  208. Chains, forms, and duality: A novice’s guide from vector calculus to manifolds John Kerl February 3, 2008  Excellent transitional piece between undergraduate vector analysis and a full blown first year graduate course on differential manifolds and geometry.
  209. SMOOTH MANIFOLDS Notes  Eduard Looijenga Utrecht University Fall 2008
  210. Notes on Lie Groups Zuoqin Wang University of Michigan December 14, 2009
  211. Topics in Differential Geometry Compactness Properties of Minimal Surfaces in Three-Manifolds Spring 2011 Jacob Bernstein Stanford University
  212. DIFFERENTIAL GEOMETRY RUI LOJA FERNANDES University of Illlinois Fall 2013
  213. Exercises on symplectic geometry Peter Hochs University of Adelade
  214. An Introduction to Lie Groups and Symplectic Geometry Robert L. Bryant Duke University 1991
  215. Differential Geometry Lecture Ilmanen Darko Pilav Simon Wood EHTZ
  216. Differential Geometry Andrzej Derdzinski Ohio State University
  217. Riemannian Geometry Reto Muller Spring Term 2013 Imperial College
  218. Analytic Vector Bundles Andrew D. Lewis Queensland University 2012
  219. MAGIC: Complex Differential Geometry (MAGIC044)
  220. INTRODUCTION TO DIFFERENTIAL TOPOLOGY Joel W. Robbin University of Wisconsin Madison Dietmar A. Salamon ETH Zurich  June 2011
  221. Modern Algebra and Geometry Catherine Meusburger Department Mathematik FAU
    Erlangen-Nürnberg 2012
  222. An Introduction to Symplectic Topology through Sheaf theory Princeton Fall 2010/New York, Spring 2011 C. Viterbo January 28, 2013
  223. Symmetry and Moving Frames Lecture Notes Peter J Olver Cotonou Benin  2012
  224. Lectures on Moving Frames Peter J. Olver † School of Mathematics University of Minnesota
  225. Introduction to de Rham cohomology Pekka Pankka University of Jyväskylä November 27, 2013
  226. Winding Around: A Course on the Winding Number in Geometry,Analysis and Topology John
    Roe Penn State Fall 2013
  227. Riemann surfaces dynamics and geometry Course Notes Harvard University ring 1998 Spring 2000 Fall 2001 Fall 2009 C. McMullen December 1 2013
  228. Notes on Differential Geometry by B. Csikós
  229. Differential Geometry Emma Carberry University of Sydney 2013
  230. Morse Theory PEDRO FREJLICH Utrecht University
  231. Differentiable Manifolds  Theodore Voronov University of Manchester 2013
  232. Manifolds Jan B Gutowski King's College London Semester 1,
  233. Lie Groups and Lie Algebras Jonny Evans University of London 2013 Homepage of the UCL-based mathematician Jonny Evans.
  234. Differential Topology Thomas Kragh Uppsala University 2013
  235. An Introduction to Gaussian Geometry Sigmundur Gudmundsson (Lund University) (version 1.053 - 5 November 2013)
  236. Differential Geometry I Michael Eichmair ETH Zurich
  237. Introduction to Riemannian and Sub-Riemannian geometry (from Hamiltonian viewpoint) Andrei Agrachev Davide Barilari Ugo Boscain UFR Mathématiques et Institut Mathematiques Jussieu October 23, 2013

  238. Differentiable Manifolds Andrzej Derdzinski Ohio State University Autumn 2013 Course Materials
  239. Differential Geometry Jason Cantarella University of Georgia Fall 2013
  240. Riemannian geometry Reto Müller Imperial College Spring 2013
  241. Symplectic Geometry Nicholas Proudfoot Department of Mathematics, University of Oregon 2011
  242. Differential Topology Bjorn Ian Dundas
  243. Differentialgeometrie I Michael Eichmair ETH Fall
  244. Differential Geometry I Yau Heng Tom Chinese University of Hong Kong 2013-2014
  245. Differentialgeometie I Michael Eichmair ETH Fall 2013 Siu-Cheong Lau Harvard
  246. Differential Geometry Peter Taylor Trinity College University of Dublin Fall 2013
  247. Differential Geometry For Physicists Complete Lecture Notes Chris Hull Imperial College Oct 2013
  248. Differentiable Manifolds I Eugene Lerman University of Wisconsin Urbana Champlain
    Course Materials Fall 2011
  249. Complex Differential Geometry Roger Bielawski University of Leeds 2009
  250. Geometry of Manifolds Tomasz Mrowka MIT Fall 2004 Lecture Notes
  251. Geometry  of Manifolds Lectures delivered by Tobias Colding Notes by Holden Lee Fall 2012, MIT 
  252. Differentiable manifolds Lecture Notes for Geometry 2 Henrik Schlichtkrull University of Copenhagen 
  253. Differentiable Manifolds Eckhard Meinrenken Lecture Notes, University of Toronto, Fall 2001
  254. Differentiable manifolds Math 6510 Class Notes Mladen Bestvin University of Utah Fall 2005, revised Fall 2006,2012
  255. Differentiable structures on manifolds Timothy Lance University At Albany
  256.  Differentiable Manifolds Theodore Voronov University Of Manchester
  257. Riemannian Geometry, Part II: Complex Manifolds Stefan Vandoren 1 1 Institute for Theoretical Physics and Spinoza Institute Utrecht University,
  258. Solving Differential Equations on Manifolds Ernst Hairer Universite de Geneve June 2011 Section de mathematiques
  259. DIFFERENTIABLE MANIFOLDS spring 2012 Course by Prof. dr. R.C.A.M. van der Vorst Solution manual Dr. G.J. Ridderbos
  260. Manifolds Differential Forms Reyer Sjamaar Cornell University 
  261. Complex Manifolds 2010 Christian Schnell SUNY Stonybrook lecture notes
  262. Complex Manifolds and Kahler Geometry Dominic Joyce, Oxford Autumn term 2012 Course Materials
  263. DIFFERENTIABLE MANIFOLDS Course C3.3b 2013 Nigel Hitchin Oxford University 
  264. Differentiable Manifolds  Zuoqin WANG  University of Michigan Math 437 Homepage and Course Materials Winter 2013
  265. Differentiable Manifolds Krishnan Shankar, Fall 2001  notes by Jim Brown Clemson University  
  266. Differentiable Manifolds Mariusz Wodzicki University of California at Berkeley (postscript)
  267. Foliations and 3-manifolds Danny Caligari University of Chicago Fall 2003
  268.  Integration and Manifolds  Fall 2007 Michael Stoll Jacobs University
  269. Complex Manifolds by Will Merry Lecture notes based on the Complex Manifolds course
    lectured by Dr. A.G. Kovalev in Lent term 2008 for Part III of the Cambridge Mathematical Tripos
  270. Hardy Spaces and bmo on Manifolds with Bounded Geometry Michael Taylor UNC
  271. DIFFERENTIABLE MANIFOLDS I Math 537 FALL 2001 Ravi Shankar Clemson University 
  272. Manifolds Neil Lambert King’s College London
  273. Calabi–Yau and Mirror Symmetry Xenia de la Ossa Mathematical Institute Oxford
    University
     
  274. Manifolds Paul P. Cook Kings College 2008-9 outline notes and homework
  275.  COMPLEX  MANIFOLDS AND MATHEMATICAL PHYSICS BY R. O. WELLS, JR.MANIFOLDS Lecture
    Notes Simon Donaldson Imperial College 2009
  276. Lectures on Morse Theory I H. Blaine Lawson Jr. University of Binghamton 2010
  277. Lectureson Morse Theory II H. Blaine Lawson Jr. University of Binghamton 2010
  278. Smooth Manifolds  L. Jeffrey University of Toronto Fall 2010/11
  279. Geometry and 3-Manifolds Walter D. Neumann Appendices by Paul Norbury Columbia University
  280. Differentiable Manifolds Semester 1, 2011/12 James Vickers and Carsten Gundlach University of Southampton MAGIC063 12 January 2011
  281. Hyperbolic manifolds, discrete groups and ergodic theory Course Notes Math 277 – Fall 1996 –
    Berkeley Math 275 – Spring 2000 – Harvard Math 275 – Fall 2006 –Harvard C. McMullen  2011
  282. Complex Manifolds Math 241, Spring 1996 C. McMullen University of California at Berkeley
  283. PIECEWISE LINEAR STRUCTURES ON TOPOLOGICAL MANIFOLDS YULI B. RUDYAK
  284. Differential Manifolds II Chris Leininger University of Illiinois Chicago Spring 2010 Homepage and Course Materials
  285. Surgery on Simply-Connected Manifolds William Browder (Scanned PDF of Classic Book)
  286. Differentiable Manifolds Nigel Hitchen Mathematical Institute University of Oxford 2014 
  287. ALGEBRAIC L-THEORY AND TOPOLOGICALMANIFOLDS A.A.Ranicki University of Edinburgh
  288. Complex Analytic Manifolds by L. Schwartz Tata Institute of Fundamental Research, Bombay 1955 (Reissued 1963)
  289. Complex Geometry, Calabi–Yau manifolds and toric geometry Vincent Bouchard  Perimeter Institute
  290. Synthetic Geometry of Manifolds beta version August 7, 2009 alpha version to appear as Cambridge Tracts in Mathematics , Vol. 180 Anders Kock University of Aarhus
  291. Differential Equations: Linear Analysis on Manifolds Spring 2012 Math 524 Pierre Albin University of Wisconsin Urbana-Champlaign
  292. A Course in Metric Geometry Dmitri Burago Department of Mathematics, Pennsylvania State University Yuri Burago Steklov Institute for Mathematics at St. Petersburg  Sergei Ivanov Steklov Institute for Mathematics at St. Petersburg  
  293. NOTES FOR MATH 599: CONTACT GEOMETRY KO HONDA USCD
  294. SYMPLECTIC GEOMETRY Gert Heckman Radboud University Nijmegen G.Heckman February 8, 2013
  295. Riemannian Geometry H.M. Khudaverdian. University of Manchester Lecture Notes  Draft20th
    May 2011
  296. LORENTZIAN GEOMETRY VIRGINIE CHARETTE AND TODD A. DRUMM University of Almora 2012
  297. KÄHLER GEOMETRY AND HODGE THEORY OLIVIER BIQUARD AND ANDREAS HÖRING Jassieu
    2010
  298. Modern Geometries Dr. Vignon Oussa Bridgewater State University Math 325 December 21, 2012
  299. Sub-Riemannian Geometry Enrico Le Donne University of Jyväskylä 2010 
  300. DIFFERENTIAL GEOMETRY Philippe G. Ciarlet City University of Hong Kong Lecture Notes Series